HYDROGEN STORAGE IN METAL-ORGANIC FRAMEWORKS

Omar M. Yaghi Department of Chemistry Center for Reticular Chemistry UCLA

yaghi@chem.ucla.edu

Progress report, May 07

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ST10

Timeline

- Project start date: 5/1/2005
- Project end date: 4/30/2009

<u>Budget</u>

- Total project funding: DOE \$1.6 M
- Funding received FY 05: \$112 K
- Funding for FY 06: 150 K
- Funding for FY 07: 430 K

Barriers addressed

Technical barriers addressed:

- Improved gravimetric and volumetric density of hydrogen uptake
- Hydrogen capacity and fast kinetics at 77K
- Improved hydrogen binding energy
- Synthesis scale up of MOFs to cubic meters

Technical system targets by 2010:

 Gravimetric capacity: 6 wt% and 1.5 kWh/L; Volume capacity: 45gH/L; operating temperature: -30° to 45°C

Partners (depends on funding)

- Juergen Eckert (UCSB)
- Joe Hupp (NW)
- Randy Snurr (NW)

Objectives and important directions

A. DESIGING POROSITY

- 1) Increased binding energy
- 2) Increase surface area without increase of dead volume
- 3) Cycling and kinetics of hydrogen charge and discharge
- 4) Impact of open-metal sites on binding energy and uptake capacity
- 5) Impregnation with polymers and nano-particles of light metals

B. MOFs AS MOLECULAR FUEL TANKS

- 1) Scale up of favored MOFs
- 2) Transfer of samples to DOE for independent verification of data
- 3) Establish a standard for hydrogen storage measurements

Reticular chemistry is concerned with linking of molecular building blocks (organic molecules, inorganic clusters, dendrimers, peptides, proteins,...) into <u>predetermined structures</u> in which such units are repeated and are held together by <u>strong bonds</u>.

DESIGN OF POROSITY

- Control of the organic link's functionality
- Variation in metal-oxide units' size and composition
- Control of pore-metrics
- Exposition of metal-sites within the pores
- **Strategies for achieving high surface areas**
- **Control of dead volume**

H₂ Adsorption in Non-Catenated MOFs

Functionality has little impact on uptake

H₂ Adsorption in Non-Catenated MOFs

Functionality has little impact on uptake

Unregistered

H₂ Adsorption in Catenated MOFs

Catenation increases uptake by 40% relative to non-catenated

Reineke, T.M.; Eddaoudi, M.; Moler, D.; O'Keeffe, M.; Yaghi, O.M. J. Amer. Chem. Soc. 2000, 122, 4843.

Large Free Volume in Interpenetrating Networks: The role of Secondary Building Units

IRMOF-62: Design of highly catenated MOF with Pore size favored for hydrogen

3.5 Zn(NO₃)₂•4H₂O 1 eq. Et₃N DMF

MOF-5 like framework Quadra-interpenetrating Small channel can be seen along crystallographic c-axis (5.2 Å in diameter) Utilization of "edge" (diyne link)

P3212 a = 31.114(1) Å, c = 39.280(3) Å Cell Volume: 32931.2(2) Å³ d = 0.691 g cm⁻³

OPEN METAL SITES
Design within MOF frameworks
Impact on uptake capacity
Impact on adsorption energy

MOFs with open metal sites

Cu₂(ATC)

Cu₂(ATC)·6H₂O

JACS 2001 (Banglin Chen)

H₂ Uptake by MOFs with Open-Metal Sites

IRMOF-1

IRMOF-13

Hydrogen Adsorption Sites

- Inelastic neutron scattering (reported last review)
- □ X-ray single crystal structure on N2 and Ar
- □ Single crystal neutron diffraction

Single crystal X-ray diffraction at 30 K for Ar guest

Single Crystal Neutron Diffraction

Data collected on VIVALDI (ILL) on 0.5 mm³ crystal sealed under D₂ Appearance of D₂ on α (**CO**₂)₃ site at 50 K, additional D₂ appears on β (**ZnO**)₃ at 5 K

J. Howard and O. Yaghi , Chem. Commun. 2006

Relationship of surface area to hydrogen uptake and reversibility of uptake

Design of surfaces replete with adsorption sites

Can high surface area and reduced dead volume (*i.e.* good volumetric capacity) be achieved in one material?

Uptake capacities of MOFs under high pressure conditions and 77K

□ 4. Reversibility of uptake

N_2 adsorption isotherm for $Zn_4O(BTB)_2$

MOF-200: Zn₄O(BBC)₂ Trigonal, P-3 a = b = 51.45 Å c = 41.80 Å V = 95,822.1 Å³

S.A. = '8,000' m^2/g

7.5 wt % Hydrogen uptake at 77K

Correlation of uptake with surface area

H₂ Adsorption (high-P) Poor room temperature uptake

	wt%	mg/g	mmol/g	cc/g	cc/cc	g/L
77 K	3.3	33	16.5	370	327	29.2
298 K	0.4	4	2	45	40	3.5

Kinetic Profile of Uptake and Release of hydrogen

(Fueling Time)

Completely Reversible Charge/Discharge of Hydrogen Adsorption in IRMOF-11 Fueling time 2.5 minutes

Blue: applied pressure, red: weight change (without buoyancy correction)

Independent Verification of MOF-177 Hydrogen Uptake Capacity

(volumetric and gravimetric measurements verified, shown using gravimetric

Volumetric H₂ uptake for IRMOF-62

IRMOF-62 Surface area: 2650 m²/g, Pore volume: 0.95 cm³/g

MOF Hydrogen Storage Capacities (50 bar, 77K)

Nanocubes as molecular fuel tanks BASOCUBES

Strategies for increasing adsorption energy

- Coordination with theory (Prof. Bill Goddard, Caltech)
- Impregnation strategies: (a) polar polymers, (b) clusters of lights metals, and organo-metallic complexes
- Design of soft chemi-sorption within the pores: Proximal Lewis acid-Lewis base sites

Strategy 1:

Binding Li to six membered rings

High room temperature hydrogen uptake (5%wt) in Li-doped Zn-MOF systems

Strategy 2A:

Impregnation with metal complexes having open metal sites

Proof of Concept

Successful Impregnation of CpW(CO)3 in

Carbonyl groups can be removed by heating under vacuum, leaving behind open metal sites of W

Strategy 2B:

Impregnation with polymers containing conjugation

Polymer impregnation MOF-177

Impregnation

Strategy 3:

Chemisorption *douce*

Reversible, Metal-Free Hydrogen Activation

Gregory C. Welch, Ronan R. San Juan, Jason D. Masuda, Douglas W. Stephan*

17 NOVEMBER 2006 VOL 314 SCIENCE 1126

Covalent Organic Frameworks (COFs)

COF-5

COF-108: Density = 0.17 g/cm^3 Surface area = $4,700 \text{ m}^2/\text{g}$

Science 2007

It's all in the angle (145°)

ZIF-8 sod

Thermal stability of ZIFs

Chemical stability of ZIF-8

K. S. Park, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, O. M. Yaghi, *Proc. Nat. Acad. Sci. USA*, 2006, *103*, 10186-10191.

Trigonal Zn metal site next to Z-F bond both pointing to the center of pore

PROGRESS

1.Tuning porosity lead to tripling of hydrogen uptake in MOFs (excess 7.5% wt, absolute 12% wt)
2.The 35 grams H2/L achieved in MOF-177, clearly indicates that dead volume is none issue for MOFs
3.MOFs exhibit fast kinetics (1-3 minutes for charging and discharging)
4.MOF materials porosity and uptake are stable to charge/discharge cycling
5.Cubic meter scale of useful MOFs is now developed by BASF

FUTURE WORK

- 1. Higher adsorption energy by:
 - (a) Design of Lewis-acid and Lewis-base sites
 - (b) Doping with Li and impregnation with early T.M. complexes
 - (c) Acetylene MOFs for high surface areas and stronger binding of hydrogen
- 2. Application of high throughput and characterization methods to search for specific structures
- 3. Testing new materials :
 - (a) Zeolite imidazolate Frameworks (ZIFs)
 - (b) Covalent organic frameworks (COFs)

Current Group Members Thanks for putting up with Professor

Dr. C. Knobler Dr. A. Côté

Dr. N. Aratani

Dr. R. Banerjee

D. Britt

E. Choi

L. Dudek

Dr. H. El-Kaderi Dr. O. El-Kaderi Dr. H. Furukawa Dr. H. Hayashi

J. R. Hunt

Q. Li J. Mendoza-Cortés K. Park

Dr. Z. Ni Dr. Q. Wei Dr. B. Ramachandran

A. Phan

I. E. Rauda D. Tranchemontagne F. Uribe-Romo B. Wang

CENTER FOR RETICULAR CHEMISTRY

UCLADCNSIDBASF

