Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

Project ID # ST12

Gregory J. Lewis UOP LLC May 16, 2007

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Start date: 5/1/2004
- End date: 4/30/2007
- % Complete: 90

Budget

- Total project funding
 - DOE: \$2,000,000
 - UOP: \$2,910,618
 - Ford: \$ 75,000
- FY06 DOE: \$525,000
- FY07 DOE: \$371,193

Barriers

- Barriers addressed (DOE-2010)
 - Useable H₂ Density
 2.0 kWh/kg & 1.5 kWh/L
 - H₂ Delivery Temperature Range
 -40 to 85°C
 - Cycle Life
 - 1000 Cycles

Partners

- Hawaii Hydrogen Carriers
- UCLA
- Ford
- Striatus

Objectives

• Overall	 Discovery of a complex metal hydride through Molecular Modeling and Combinatorial Methods which will enable a hydrogen storage system that meets DOE 2010 goals Deliverables: Optimized material Sample for independent testing at SWRI Documentation
• 2004/2005	 Validation and Demonstration of VHTS (Molecular Modeling) Validation and Demonstration of Medium Throughput Combinatorial Tools Downselect from Na, Li, Mg/AlH₄
• 2005/2006	 Demonstration of High Throughput Combinatorial Tools Identification of New Materials Approaching DOE Targets
• 2006/2007	 Search for New Hydrogen Storage Materials using High Throughput Combinatorial Tools Identification and Characterization of New Materials Meeting DOE Targets

High Throughput vs. Traditional Approach

- Total Hydride/Dopant/Process-Variable space is too large even for our Combi methods to fully explore, given time & resources.
- HT Tools are more difficult, costlier to develop/modify than Single-Sample tools, this limits Combi "Prep/Test" Space.
 - Synthesis methods, measurement conditions
 - Selected milling approach based on state-of-the-art at project start
- Even with these limitations a vast phase space is available for searching by Combi methods.
- Goal of Combi is to find <u>leads</u>, additional measurements & characterization can be done using traditional methods.

Overall Project Approach

- Modeling
 - Virtual High Throughput Screening, ~1000 compositions/month
 - DFT to predict new materials with favorable thermodynamics, refine leads

Combi Synthesis & Screening

- High Throughput (up to 48x)
- Discrete, scalable sample preparation using ball-milling or solution-phase
- Follow up on Leads:
 - Characterization & modeling for increased understanding
 - Optimization, scale-up & multi-cycle testing

High Throughput Testing Protocol

Multi-Cycle Visualization for one Run (16 of 48 Samples)

Technical Accomplishments 2006-2007

Since last Peer Review:

- Nearly 900 samples prepared, characterized by XRD, and tested
 - -16 Ternary / quaternary / pentenary phase diagrams investigated
 - Hydrogen-containing components include LiNH₂ and LiBH₄
 - Metal components include Li, Na, Mg, Al, Ti, Zr, Mn, V, Cr, Mo, Co, Ni, Cu, Zn, and some mixtures
- High Throughput Synthesis System on line
 - Doping Studies carried out
 - 2 different base materials (non alanates)
 - 15 different dopants

NaNH₂ – NaBH₄ – MgH₂ Phase Diagram

$NaNH_2 - NaBH_4 - MgH_2$ Phase Diagram

• First desorption often <2 wt%H by 250°C, 3 - 4 wt.% H₂ by 350°C

A Honeywell Company

Low reversibility for samples upon multiple desorption runs

10

Transition Metal – Borohydride – Amide Phase Diagrams

Staged approach – increasing complexity:

- Synthesize simple Transition Metal (TM) borohydrides or amides
 - e.g., $TMCI_x + x LiBH_4 \longrightarrow TM(BH_4)_x + x LiCI$
- Stabilize TM borohydrides/amides with alkali:
 - e.g., $TMCI_x$ + x+2 LiBH₄ \longrightarrow Li₂TM(BH₄)_{x+2}
- Expand to complex mixtures of borohydrides + amides:
 - e.g., $TMCI_x + y LiBH_4 + z LiNH_2 \longrightarrow$

 $Li_{(y+z-x)}TM(BH_4)_y(NH_2)_x + x LiCl$

- Facilitate transport by including Li(NH₂)₃BH₄ which is known to melt
- These materials may dehydride to form complex as yet unknown imides, nitrides, borides, or mixtures of such

$LiNH_2 - LiBH_4 - LiH - VCI_3$ Phase Diagram

- Three desorption cycles: 100°C, 230°C, 350°C
- $VCI_3/(LiNH_2 + LiBH_4 + LiH) = 0.125$
- Hydrogen release sometimes observed during milling

$LiNH_2 - LiBH_4 - LiH - VCI_3$ Phase Diagram

Following a single composition, 0.5 $\text{LiNH}_2 - 0.375 \text{LiBH}_4 - 0.125 \text{VCl}_3$ through the desorption cycles illustrates the general trend of poor reversibility often observed

VHTS Screening of Alkali, Alkaline-Earth and Transition Metal Borohydrides

Screened ~1200 pentenary Borohydide mixtures
Heats of mixing not large enough to stabilize any mixture versus dehydriding
Need an additional 15 kJ/mol*H₂ to stabilize mixtures

First-principles phase diagrams of complex hydrogen storage mixtures

 $2 \operatorname{LiH} + \operatorname{Mg(NH}_2)_2 \rightarrow \operatorname{Li}_2 \operatorname{Mg(NH)}_2 + 2 \operatorname{H}_2 \qquad 5.6 \text{ wt. } \% \operatorname{H}_2$

Tests for the quaternary Li-Mg-N-H system show good agreement with experiment. Has been applied to the Li-Mg-B-N-H system.

We can pinpoint those compositions and reactions which show the greatest promise for further experimental study.

First-Principles phase diagrams – Key Advantages

1. Can identify all thermodynamically favored reactions in a given multicomponent system with known structures (e.g. Li-Mg-N-H).

2. Can determine thermodynamically favored reaction pathways and end products for a given mixture.

3. Can determine which destabilized reactions are thermodynamically reversible. For instance,

 $\text{LiNH}_2 + \text{MgH}_2 \leftrightarrow \text{LiMgN} + 2\text{H}_2 \quad (A \rightarrow E)$

Alapati et al., J. Phys. Chem. 110, 8769 (2006)

will instead proceed via intermediate steps:

 $LiNH_2 + MgH_2 \rightarrow$

 $(A \rightarrow B)$ LiH+ $\frac{1}{2}Mg(NH_2)_2$ + $\frac{1}{2}MgH_2 \rightarrow$

- $(B \rightarrow C) \quad \text{LiH} + \frac{1}{4}Mg(NH_2)_2 + \frac{1}{4}Mg_3N_2 + H_2 \rightarrow$
- $(C \rightarrow D) \quad \frac{1}{2}LiH + \frac{1}{4}Li_2Mg(NH)_2 + \frac{1}{4}Mg_3N_2 + \frac{3}{2}H_2 \rightarrow$

 $(D \rightarrow E)$ LiMgN + 2H₂

Number of H_2 molecules released

- VHTS and First Principles modeling capabilities
 - Predicted alanate mixtures do not meet DOE targets
 - Identified several potential reactions with desired energetics
- Medium Throughput Assay (8 Reactors)
 - Investigated LiAIH₄-NaAIH₄-Mg(AIH₄)₂/Ti phase diagram
 - Investigated rehydriding reactions with AI, alkali and alkaline earth hydrides/Ti
 - Confirmed modeling results that alanates do not meet DOE targets
 - Also applied to non-alanate studies
- High Throughput Assay (48 Reactors)
 - Measured multi-cycle capacities 1000+ samples in many phase diagrams
 - Investigation of LiNH₂-LiBH₄-MgH₂ phase diagram found kinetic enhancement due to the formation of Li₄(NH₂)₃BH₄, which melts during desorption/absorption
- High Throughput Synthesis System
 - Scan of 15 dopants carried out on two base materials
- Mixtures of Complex Hydrides have yielded few new compounds, and those found have not met DOE targets for hydrogen storage.

- Combinatorial approach works very well for finding optimum compositions in multinary phase diagrams
- High throughput equipment is more complex, takes longer to develop than single-sample methods
- Medium Throughput Assay (8 Reactor)
 - [+] Worked well
- High Throughput Assay (48 Reactor)
 - [+] Screened ~ 1000 experimental samples (+ refs. in every run)
 - [-] Labor intensive high maintenance
 - [-] Sample size too small for characterization after test
- High Throughput Synthesis System
 - [+] Wide synthesis capability
 - [-] Development, shakedown
 - [-] Accurate handling of milled powders
 - [-] Sample transfer equipment

- Virtual High Throughput Screening
 - [+] When models ready, very fast & covers high-dimensional space
 - [+] Even negative results are valuable (after experimental validation): give confidence to move focus elsewhere
 - [+] Not limited to known structures
 - [+] Provided insight to alanates: heats of mixing too low to yield mixtures with desired thermodynamics
 - [-] Development of new force fields takes a long time
- First Principles Modeling
 - [+] Provided insights into thermodynamics of LiNH₂ MgH₂ LiBH₄ system
 - [+] Generated several new leads with promising thermodynamics
 - [-] Experimental follow up disappointing kinetics?
 - [-] Computationally expensive, dev. of high-throughput algorithms
 - [-] Accuracy highest for known structures
- Modeling Needs:
 - Ability to predict kinetics & dopant effects