

DOE Review, May 16, 2007

Metal Hydride Center of Excellence

Lennie Klebanoff, Director (presenting) Jay Keller, Sandia H₂ Program Manager

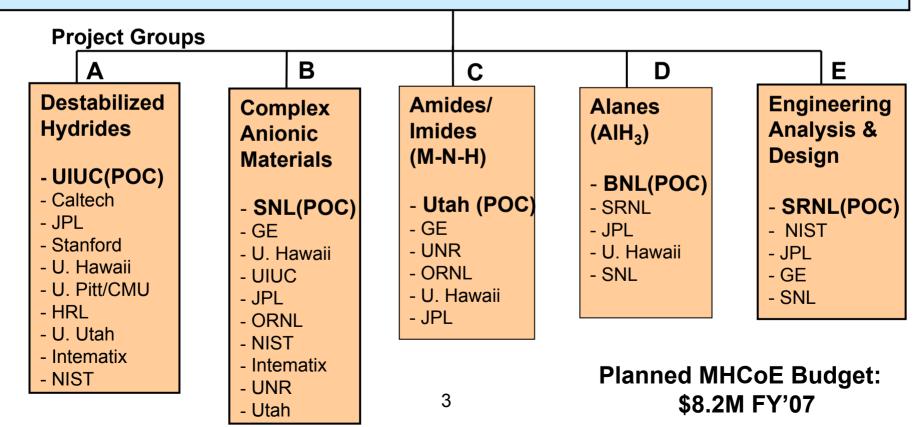
http://www.ca.sandia.gov/MHCoE/

(This presentation does not contain any proprietary information)

1

Project ID # ST14

- > Overall MHCoE Structure, Participants
- Coordinating Council, Management Costs
- Center-wide, Project Milestone Tracking
- Projects A E, Technical Highlights
- By The Numbers (summary of MHCoE pubs, talks, patents)
- Working Together
- Connections with Other Groups
- MHCoE Materials Relative to DOE Targets
- Closing the Gaps
- > Overall MHCoE Future Direction



MHCoE Project Structure

DOE

Coordinating Council (2006-2007)

Ian Robertson (UIUC, POC A), Ewa Ronnebro (SNL, POC B), Zak Fang (Utah, POC C), Jim Wegrzyn (BNL, POC D), Don Anton (SRNL, POC E), Craig Jensen (UH), Jay Keller (SNL), Lennie Klebanoff (SNL), Bruce Clemens (Stanford)

Purpose: Provide overall discussion/guidance to DOE on technical and programmatic directions, go/no-go decisions, center-wide issues

Current Activities:

- > Evaluating/Renewing Partner Phase I/Phase II Contracts
- Formulating Materials Down-Select Process for 9/2007 Milestone
- Improving Intellectual Property Procedures for the MHCoE

The Council convenes many times per year, both telecons, face-face

Klebanoff, Keller are permanent members, with other positions evaluated yearly. Project POC's are also C.C. members

MHCoE Mgmt. FY'07 Estimated Costs

Lead-Lab Center Mgmt. Cost:

- DOE Interactions
- Coordinating Council
- MHCoE Milestones Tracking
- Center Meetings
- Partner Coordination
- Collaborations with Other Groups

Lead-Lab + Partners Mgmt. Cost: \$62

- All of the above, plus.....
- Project Meetings
- Developing/Tracking Project Milestones
- Coordinating Council
- Project-Project MHCoE Collaborations

\$445K total \$26.2K/partner (17 partners) 5.4% of MHCoE Budget

> \$625K total \$36.8K/partner 7.6% of MHCoE Budget

Management and coordination of a large center is being provided at very reasonable cost

MHCoE Milestone Spreadsheet -- Center-Wide Milestones --

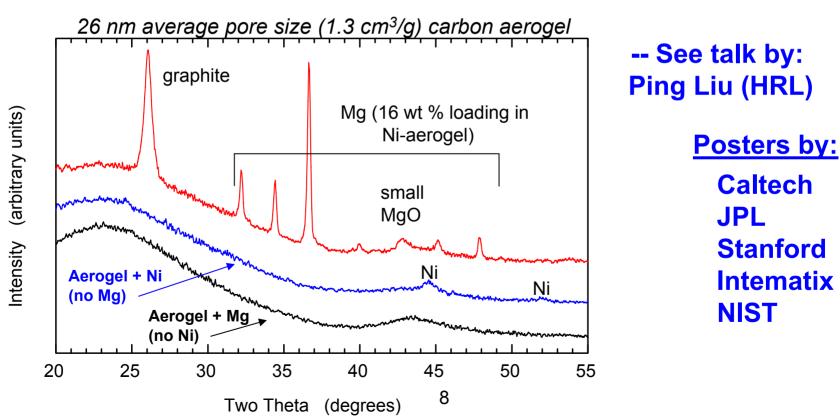
As a Center we are organizationally tied to the MYRDDP Milestones

Milestone Lev		RDDP, Center, or Project		ne begin day indi		10/1/2004	4) and er	lds FY15 (9/30/201	5). Each	cell has	a 6 m on	th dura	tion and	starts
Organization	Task #	Task Description	10/1	4/1	10/1	4/1	10/1	4/1	10/1	4/1	10/1	4/1	10/1	4/1	10/1
			FY05	FY05	FY06	FY06	FY07	FY07	FY08	FY08	FY09	FY09	FY10	FY10	FY11
MYRDDP Mil	estone	es (Relevant to the MHCoE)						Μ	Ī					M	
MHCoE Center Milestones								MR			M	R		M	
Task 4: R&D board Regene		anced Solid-State Materials for 2010 Targets (On-													
CTR	Mat	Workshop for partners to present materials and show the council how their material or class of materials will meet the 2010 technical targets. (AUG 2007)						М	UPDAT	ED					
CTR	Mat	Prepare material classes for down selection & recommendations to DOE for redirection of resources to the top 50% (9/15/07)						R	UPDAT	ED					
DOE	7	Down-select on-board reversible metal hydride materials (4Q 2007)	UPDATED: moved back from 4Q FY09												
CTR	Sys	Workshop for partners to present design engineering concepts and show the council how their concepts will meet the 2010 targets. (2Q 2009)									Μ	UPDAT	ĒD		
CTR	Sys	Prepare 2010 target based design concepts for down selection & recommendations to DOE for redirection of resources to the top 50%. (3Q 2009)										R	UPDAT	ĒD	
CTR	Sys	Complete proof of concept for a complex hydride integrated system meeting 2010 targets. (4Q 2010)												Μ	
DOE	10	Go/No-Go: Decision on continuation of on-board reversible metal hydride R&D (4Q 2010)							UPD	ATED: m	oved ba	ck from	4Q FY12	2 D	
A. Destabilized Hydrides					D)	D	D						-
B. Complex	Anioni	ic Materials (Borohydrides & Alanates)		1		DD) D	D					D	
C. Amide/Imides (M-N-H Systems)									n						

MHCoE Milestone Spreadsheet -- Project B Milestones --

Progress checked against milestones quarterly, aids planning, tracks technical risk, Rolls up to MYRDDP Milestones

Milestone Level: MYRDDP, Center, or Project		Timeline begins FY05 (10/1/2004) and ends FY15 (9/30/2015). Each cell has a 6 month duration and starts on the day indicated.														
Organization	Task #	Task Description	10/1	4/1	10/1	4/1	10/1	4/1	10/1	4/1	10/1	4/1	10/1	4/1	10/1	4/1
	#		FY05	FY05	FY06	FY06	FY07		FY08	FY08	FY 09	FY 09	FY10		FY11	FY11
B. Complex Anionic Materials (Borohydrides & Alanates)					DD)			D			
	1	Modified Complex Hydrides			R	2				R				R		
	1.1	Development of alanates								_					!	
SNL-CA	1.1.1	Accomplish synthesis, characterization and measuring of sorption properties of a new bialkali alanate K2LiAIH6. Published in the Journal of Physical Chemistry B.			R	2										
U. Hawaii	1.1.2	Complete fundamental studies of the alanates. (Task completed)			_		R	2								
	1.2	Synthesis and characterization of borohydrides													İ.	
SNL-CA & U	1.2.1	Synthesize high-capacity borohydrides in the solid state guided by the modeling efforts					M	IN	IN	R					Ì	
SNL-CA	1.2.2	Go/no-go for formation of Ca(BH4)2 and Mg(BH4)2. Go for Ca, no-go for Mg.				D										
	D	Planned Portfolio Reallocation Decision Point (Proje	ct bars)												
	D	No Go decision / Resources reallocated to other ma	terials												i –	
	D	Go decision established													İ	
	Μ	Milestone (Subtask bars)													i	1
	R	Output (Task bars)													i –	
															<u> </u>	

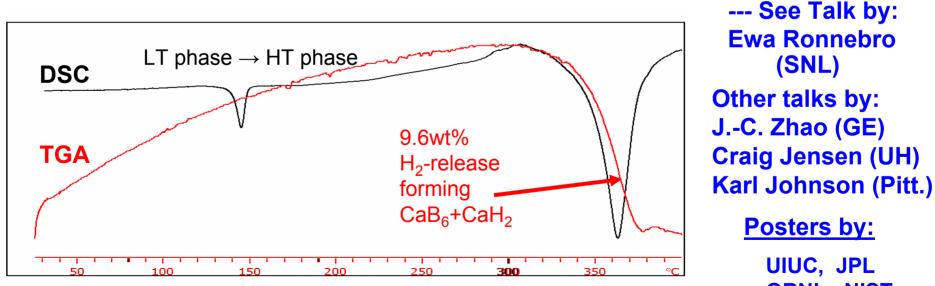


Project A – Destabilized Hydrides

Develop strategies for reducing H₂ storage thermal requirements, improve hydride kinetics

New Project Lead: Ian Robertson, UIUC

<u>Project A Technical Highlight</u>: Nickel wetting layer enables incorporation of Mg into carbon aerogel

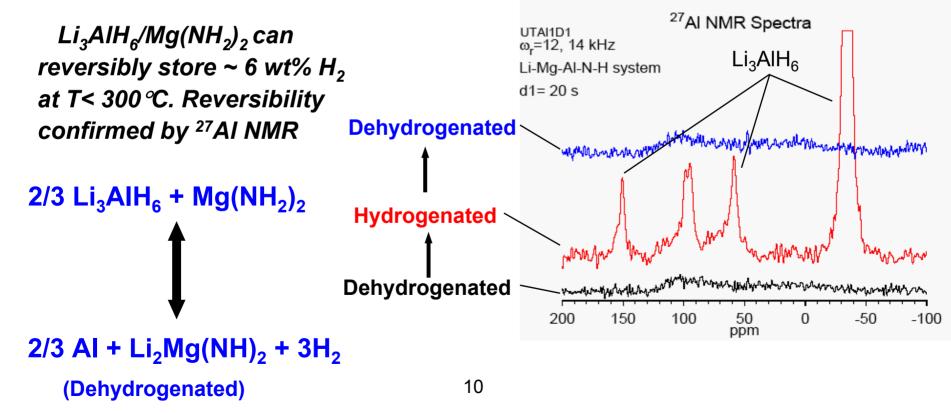

Project B - Complex Anionic Materials

Predict, synthesize and evaluate promising new complex hydride materials

Project Lead: Ewa Ronnebro, Sandia

<u>**Project B Technical Highlight:**</u> Theory-predicted $Ca(BH_4)_2$ is reversible

 $CaB_6 + 2CaH_2 + 10 H_2 \leftrightarrow 3Ca(BH_4)_2$ re-hydrided at 700bar, 400C

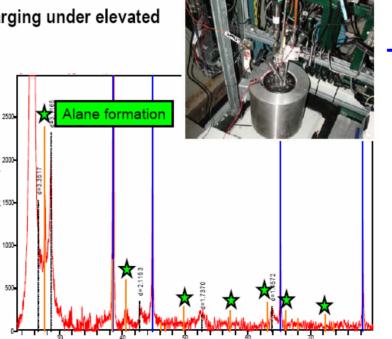


Project C - Amides/Imides

Assess viability of amides, imides for on-board H_2 storage

New Project Lead: Zak Fang, U. Utah

Project C Technical Highlight:



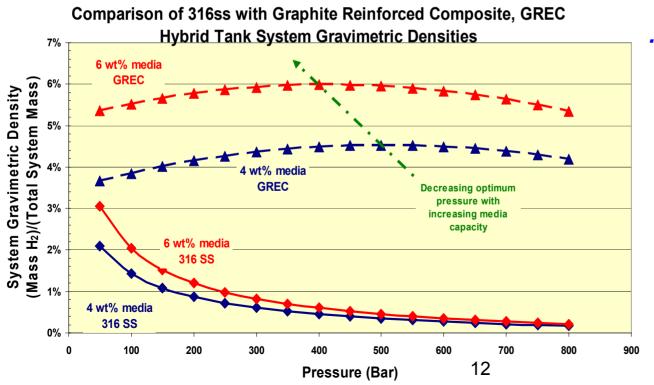
Understand desorption and regeneration properties of AIH₃ for H_2 storage

Project Lead: Jim Wegrzyn, BNL

<u>**Project D Technical Highlight:**</u> Electrochem. Regeneration of Al \rightarrow AlH₃

- Electrochemical charging under elevated hydrogen pressure
- 500 psi H₂
- 60 C
- 10 V
- 2 hr
- /(Counts) Process needs to be optimized to increase vield from mg to g

--- for more results, see **MHCoE Poster by** Ragaiy Zidan (SRNL)


> Also see talks by: Jason Graetz (BNL) Craig Jensen (UH)

Provide engineering, analysis and design supporting DOE system performance goals. Provide engineering-based materials targets

Project Lead: Don Anton, SRNL

Project E Technical Highlight: MH/High Pressure Hybrid Tank Analyzed

... Analysis reveals the effects of storage tank construction material, operating pressure, media gravimetric density and void fraction on system gravimetric and volumetric storage densities...

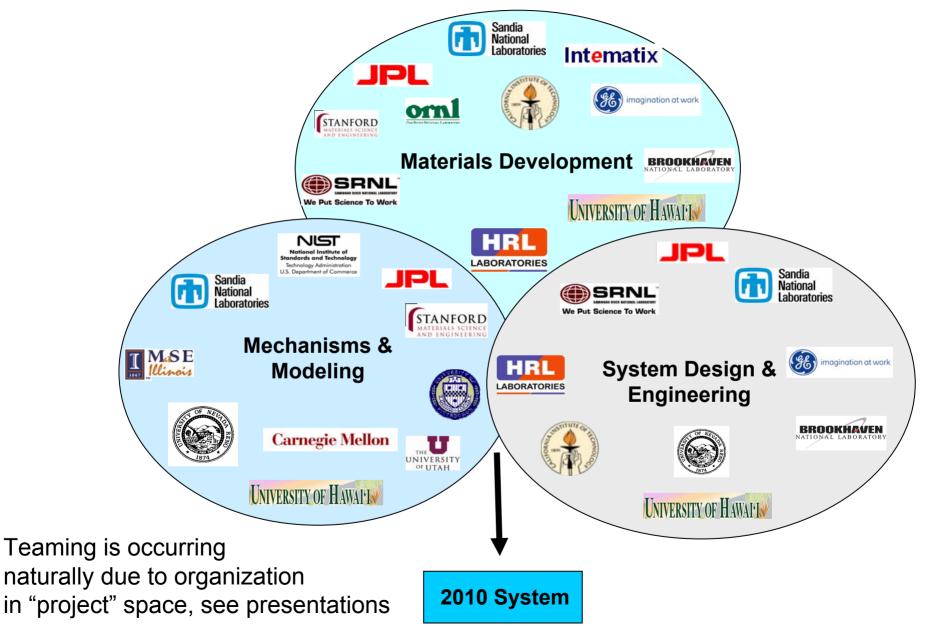
-- For more results, see poster by: Don Anton, SRNL

By The Numbers....

From 5/2006 to 4/2007:

62 -- MHCoE Publications (Published, Accepted, Submitted)*

- 87 -- MHCoE Talks
- **10** -- Patents filed based on MHCoE work


<u>*Published in:</u> Phys. Rev. Lett. Phys. Rev. B J. Amer. Chem. Soc. J. Phys. Chem. B, C

Inorg. Chem. J. Alloys and Comp. J. Appl. Phys. Acta Crysta

Scripta Materiala J. of Metals J. Solid State Chem Chem. Materials

Working Together in the MHCoE

Theory Guides the MHCoE Materials Discovery Efforts

MHCoE Theory Group Mark Allendorf (SNL, Coordinator), Duane Johnson (UIUC), Karl Johnson (Pitt.), Dave Sholl (CMU), Eric Majzoub (SNL), **Ursula Kattner (NIST)** (Examples) Sholl/Johnson (CMU/Pitt.) ScH₂ + 2LiBH₄ LiMgN $\Delta H \sim 34 \text{kJ/mol H}_2$ Ahn (Caltech) Fang (Utah) Sc hydrogenation Hydrogenation @ ScH₂/2LiBH₄ prep. 138 bar/ 240°C, H₂ desorption ⁶Li, ¹H MAS NMR ⁴⁵Sc, ¹¹B, ⁷Li, ¹H MAS-NMR **Bowman (JPL) Bowman (JPL)** (Project C) (Project A) 15

Working Together in Project A

ScH₂ / 2LiBH₄

Sample prep.

Theory

CMU/U.Pitt/UIUC (Thermo.)

Advanced

Characterization

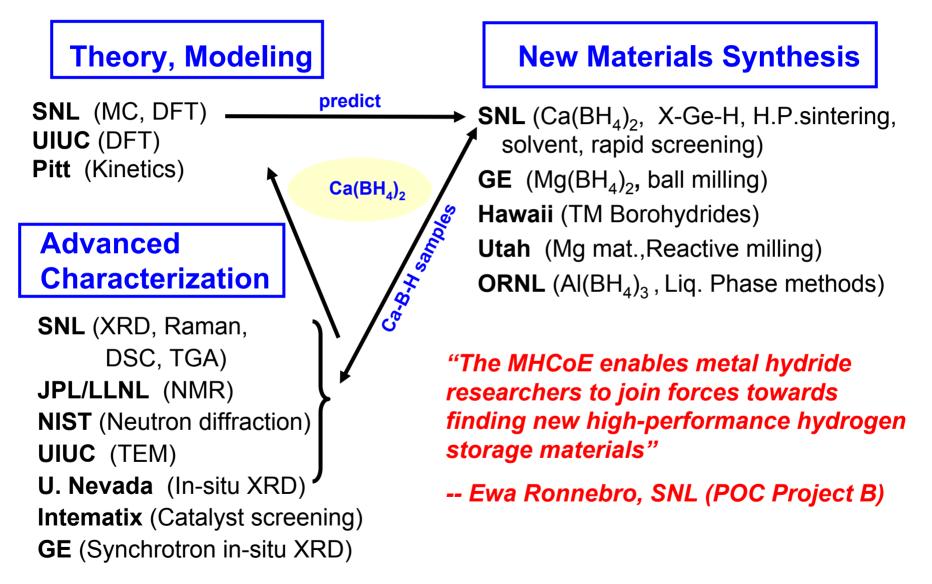
NIST (Neutron methods) JPL/Caltech (NMR, TEM) Stanford (Synchrotron XRD) UIUC (*In situ* TEM) SNL (High-P Sieverts system)

"The MHCoE brought additional synthesis, characterization and modeling capabilities to the initial destabilization team, thereby accelerating this effort." -- Ian Robertson, UIUC

lan Robertson, UIC (Proj. A POC)

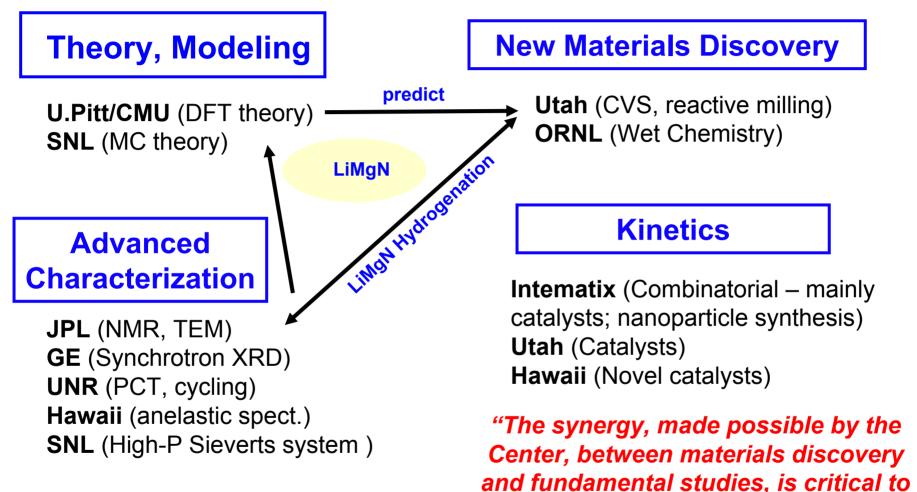
New Destabilized Systems

HRL (LiBH₄-based systems)
Pitt/CMU/UIUC (Theory/modeling)
Caltech/JPL (Ca alanate systems,
ScH₂ + 2(LiBH₄))
Hawaii (Work w/ UOP)
Utah (Li-Al-N syst.-mainly in Proj. C)


Kinetics

HRL (Nanostruct. materials, scaffolds)
Stanford (Thin-film model systems)
Intematix (Combinatorial – catalysts; nanoparticle synthesis)
Utah (High energy milling, CVS)
JPL/Caltech (T-ramp, RGA)
Hawaii (Novel catalysts)

16



Working Together in Project B

Working Together in Project C

eventual success"

-- Zak Fang, U of Utah (Proj. C POC)

Working Together in Project D

Regeneration

BNL/ORNL (amide-alane mixtures)SRNL (Electrochemical)Hawaii (supercritical fluid approaches)

Advanced Characterization

BNL (Synchrotron XRD, DSC, TEM, TPD)JPL (NMR)Hawaii/NIST (Neutron scattering)

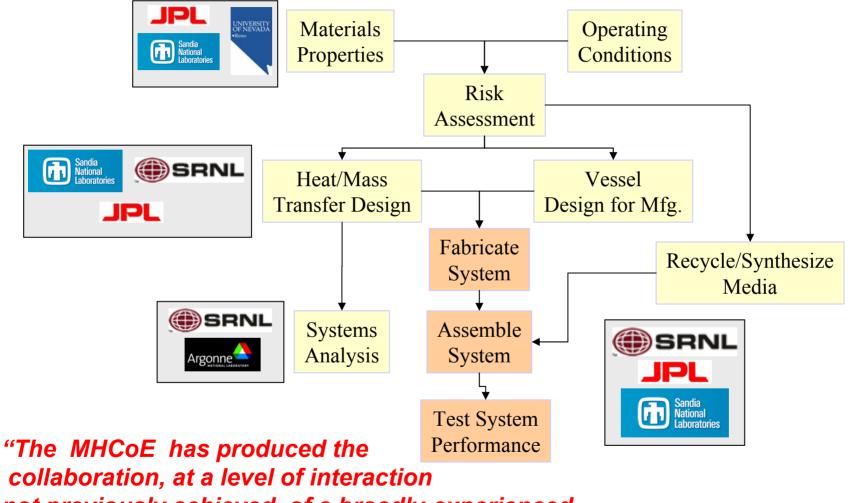
Theory-Expt. Collaboration: BNL needs guidance on stabilities of alane-Lewis Acid complexes

i.e., TEDA + AI* + $H_2 \leftrightarrow \text{TEDA-AIH}_3$ (Triethylenediamine)

Theory Group: Calculate gas-phase complex stabilities to guide BNL regeneration efforts

System Studies

BNL (Synthesis and kinetics)SRNL (Proto-type tank studies)SNL (Engineering properties)


MHCoE Theory Group (first principle amine-alane models)

"The MHCoE approach covers all aspects of alane research from fundamental theory to tank design and testing."

> -- Jim Wegrzyn, BNL (Project D POC)

Working Together in Project E

not previously achieved, of a broadly-experienced team of hydrogen storage engineering experts"

--Don Anton, SRNL (Proj. E POC) 20

MHCoE/Carbon Center:

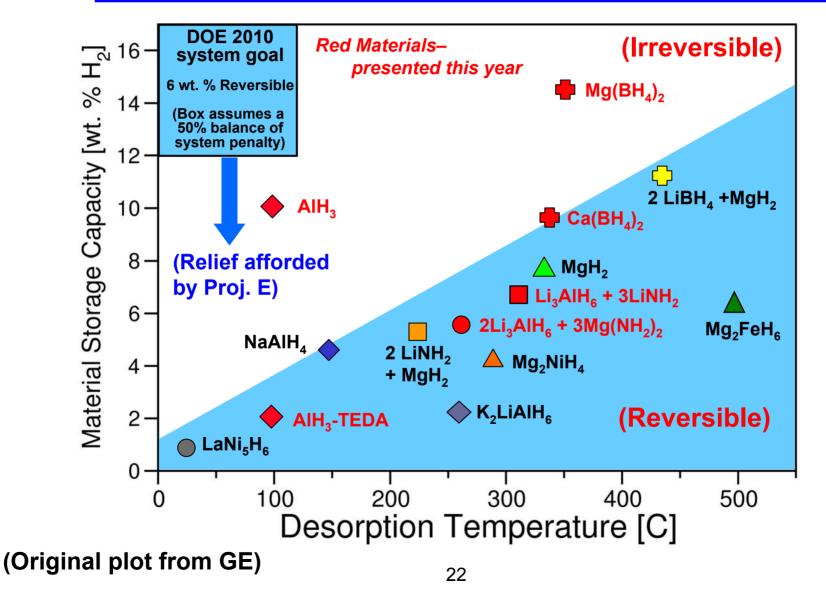
MHCoE Coordinating Council tours the Carbon Center on 7/18/2006, meets PI's, discusses Carbon Center work

MHCoE/Chemical Center:

Initial meeting on 5/17/2007 to initiate contacts, discuss AI regeneration (Proj. D)

MHCoE/Berkeley H₂ Storage Group:

Two meetings on 7/21/06, 3/13/07 at LBNL


Examined nano approaches to improving kinetics, thermodynamics in AlH₃, destabilized systems

-- Agreed we should cooperate in developing metal hydride nanoparticle superlattices--

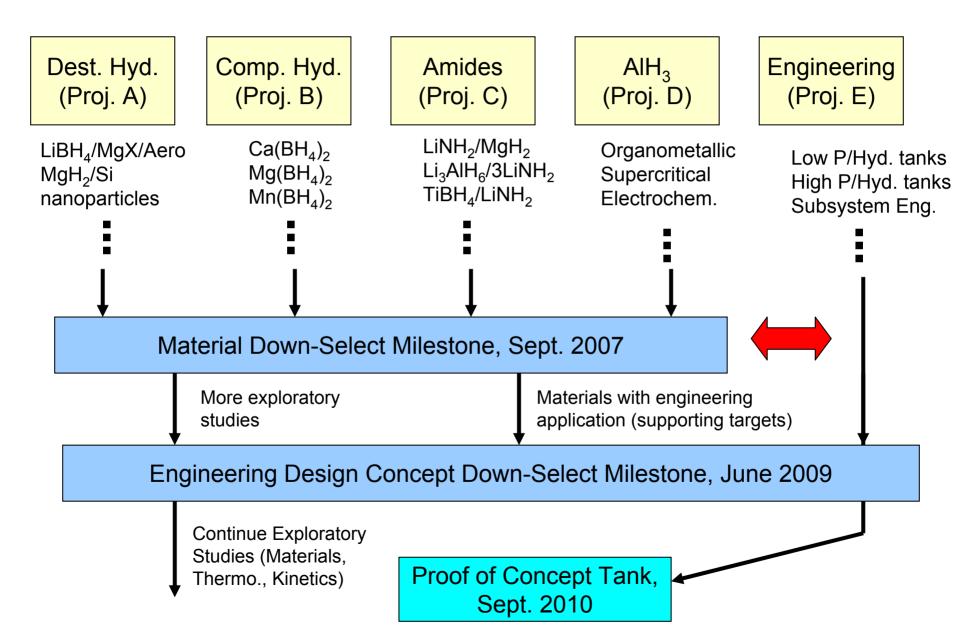
MHCoE Materials Relative to DOE Targets

Closing the Gaps

The MHCoE collaborations are focussed on closing the gaps between the materials' performance and the DOE 2010 goals....

Weight Capacity: Emphasizing high wt. % systems: 2007 Project B– Mg(BH₄)₂, Ca(BH₄)₂ 2007 Project E– reduced system penalty

Reversibility: Exploring effects of additives on reversibility: 2007 Project B– Ca(BH₄)₂ reversible with additive


Thermodynamics: Investigating destabilization, nanoconfinement: 2007 Project A– Sc predicted to lower △H for LiBH₄

Kinetics: Exploring additives, nanoconfinement to improve kinetics: 2007 Project C– LiNH₂ lowers the E_a for LiAlH₄, Li₃AlH₆ to release hydrogen

Combinatorial studies will be important in the materials discovery, guided by theory

Overall Direction of the MHCoE

MHCoE Meeting, Livermore CA, October 30, 2006