

Discovery and Development of Metal Hydrides for Reversible On-board Storage

Presented by *Ewa Rönnebro, Eric Majzoub and Tony McDaniel* Sandia National Laboratories May 15-18, 2007

Project ID#ST15

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project started in March '05
- Project end ~ 2010
- Percent complete ~ 40%

R&D Budget

- \$1.84M in FY '06
- \$1.96M in FY '07

Barriers

- Weight & Volume, Cost, Efficiency, Durability
- Charge/discharge rates
- Lack of Understanding of Hydrogen Physisorption and Chemisorption

MHCoE Partners

Caltech, ORNL, JPL, UNR, Stanford, UIUC, Utah, UH, PITT, SRNL, HRL, CMU, GE, NIST, BNL, Internatix

Collaborators

National U. of Singapore, Tohoku U., UCLA, U. Geneva, LLNL, UTRC, IFE, ESRF

Technical POC (and MHCoE Director): Lennie Klebanoff

Core Technical Team

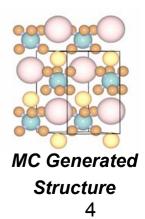
Mark Allendorf: *Theory, coordination* Eric Majzoub: *MC theory, experiments* Tony McDaniel: *High-throughput screening* Ewa Rönnebro: *Proj. B POC, new materials*

- Weina Yang: 1 year visiting PhD-student from Queen Mary University of London
- In the process of interviewing postdoc candidates

Other Key Contributors

Bob Bastasz, Andy Lutz, Tim Boyle, Bill Houf Karl Gross (Hy-Energy)

Discovering New Complex Hydride Materials


Experimental

- ➤ Established a synthesis route that combines high-energy milling followed by hot-sintering under high H₂-pressures: Metal + Binary Hydride + H₂ → Complex Hydride Boride + Binary Hydride + H₂ → Metal Borohydride (Normal run: P < 700bar, T < 450°C)</p>
- New Start (10/1/2007): Developing a high-throughput combi method using micro hot-plates and *in-situ* diagnostics to rapidly synthesize and test new materials

Theory

Theory is continuing to guide experiments. Monte Carlo (MC) technique provides minimum energy structures for subsequent enthalpy estimates. Full thermodynamics are calculated for promising materials, including bialkali borohydrides

HP-autoclave

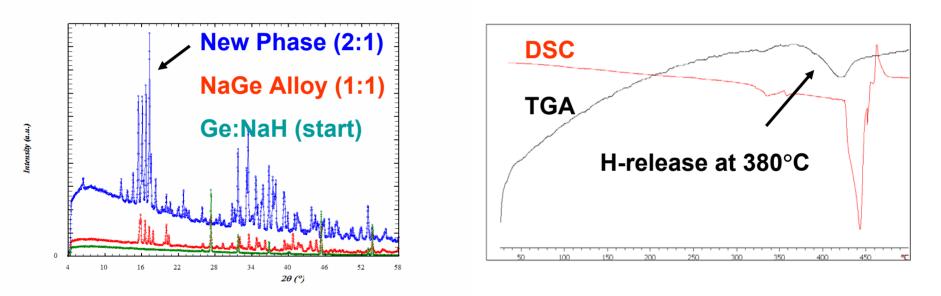
> Si-system:

<u>Status May 2006:</u> New materials phases found in the Na-Si-H system, but H-content was very low according to Neutron Spectroscopy (NIST) and NMR (LLNL/JPL)

FY 2007: We explored new synthesis routes, including reactive milling in collaboration with HRL and U. Utah. No new phases with *high*-hydrogen content were found

Therefore, made no-go decision on Na-Si-H system (Dec-06)

> Other New Compounds Found in FY2007:


X-Ge-H X-Mn-H

XRD, PCT measurements in progress

Future Directions: A-X-H systems (A = Ti, Nb, Cr, Mn; X = Li, Na, Mg, Ca)

Motivation: X-Ge-H; X = alkali or alkaline earth metals, are unexplored compounds with potential for 5 - 7 mat. wt% H_2

XRD shows that a molar ratio of NaH:Ge 2:1 results in a new hydride by HP-sintering

DSC and TGA shows gas release upon exothermic phase transition

Synthesis condition to be optimized. PCT-measurements will 6 reveal H₂ storage performance

New Solid-state Synthesis of Ca(BH₄)₂

Motivation: Theory predicts Ca(BH₄)₂ has promising thermodynamics (△H ~ 53 kJ/mol), 9.6 wt. % Status May 2006:

Solid-state HP-sintering yielded unidentified Ca-B-H compound, but product yield was low, slow kinetics

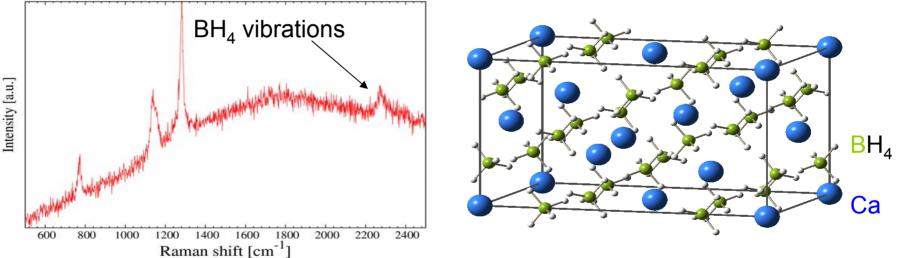
FY2007:

$CaB_6 + 2CaH_2 + 10 H_2 \leftrightarrow 3Ca(BH_4)_2$ @700bar, 400°C, 48hours

- By trying several additives, the product yield from HP-sintering was improved to ~ 80%, while improving kinetics (Patent filed)
- Identified the Ca-B-H compound as Ca(BH₄)₂ by thorough characterization teaming with our partners and collaborators
- Prepared pure, crystalline Ca(BH₄)₂ from Aldrich Ca(BH₄)₂·2THF for PCT-desorption characterizations with different additives

Notes: Other recently reported non-reversible solid-state routes:

- 2LiBH_4 +CaCl₂ \rightarrow Ca(BH₄)₂ + 2LiCl (Nakamori, Orimo et al, J. Alloys Compd, in press)
- $MgB_2 + CaH_2 + 4H_2 \rightarrow Ca(BH_4)_2 + MgH_2 \gg 8.3 \text{ wt\%}$ calc (Dornheim, Klassen et al, J. Alloys Compd, in press)

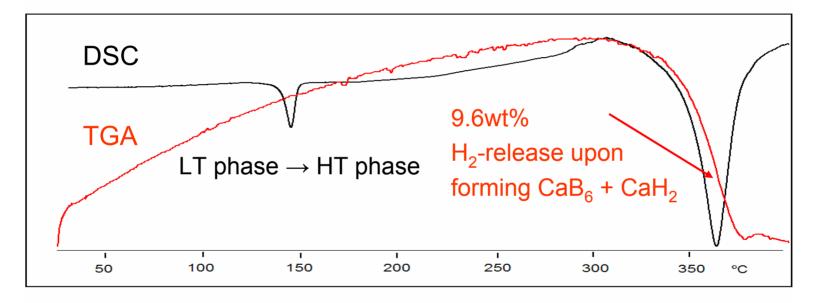

Raman of solvent-free Ca(BH₄)₂: Observed BH_4 vibrations that are consistent with literature data on

LiBH₄: S. Gomes, H. Hagemann, K. Yvon, J. Alloys Compd., 346 (2002) 206

From synchrotron XRD data (ESRF) of RT structure:

Space group: Fddd (No. 70)

a = 8.769 Å, b = 13.104 Å, c = 7.492 Å



Results:

- Synchrotron-XRD (SNL, UNR, ESRF) preliminary indicates a structure similar to Miwa et al., PRB. 74, (2006), 155122(1-5)
- Neutron Spectroscopy identifies Ca(BH₄)₂ (NIST)
- Direct B-H bonding confirmed with ¹¹B NMR (JPL, LLNL)

TGA and DSC of $Ca(BH_4)_2$ as prepared by solid-state synthesis at high-H₂ pressures from a mixture of $CaB_6 + 2CaH_2$

- XRD@160°C shows a phase transition from low temp. (LT) to high temp. (HT) Ca(BH₄)₂, confirmed by *in-situ* XRD by U. Nevada
- XRD@400°C shows dehydrogenation to CaB₆ + CaH₂, i.e. Ca(BH₄)₂ was fully decomposed upon releasing 9.6 wt% H

Dehydrogenation:

$$3Ca(BH_4)_2 \xrightarrow{350 \circ C (TGA)} CaB_6 + 2CaH_2 + 10H_2$$

$$350 \circ C (TGA) \qquad (9.6 \text{ wt. \% H released})$$
Hydrogenation:
$$CaB_6 + 2CaH_2 \xrightarrow{100 \text{ bar } H_2}{390 \circ C} \qquad 1\% Ca(BH_4)_2 \text{ yield}$$

However,

$$CaB_6 + 2CaH_2 \xrightarrow{700 \text{ bar } H_2} 80\% Ca(BH_4)_2 \text{ yield}$$

Calcium borohydride appears to be a reversible high-pressure, high-capacity system

Calcium Borohydride

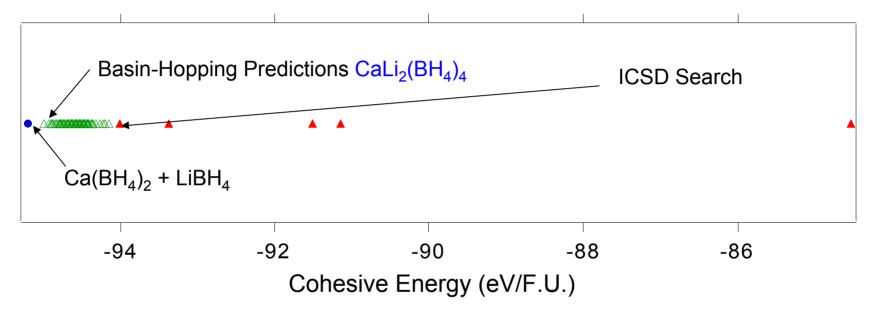
- > Thermodynamics, kinetics and cycle life to be explored
- Optimize re-hydriding conditions at *lower* pressures
- > Explore impact of additives on required T, P for use
- > Assess B_2H_6 release upon H_2 desorption

Bialkali And Other Borohydrides

- > Explore bialkali borohydrides guided by MC theory
- Teaming with our partners to explore reversibility of other metal borohydrides at our high-hydrogen pressure facility

Status May 2006: Approach created and validated

FY2007: Code improvements and exploring mixed cation borohydrides


Experimentally Observed structure	l4 ₁ /a	P2 ₁ /c
MC search	l4 ₁ /a	C2/m
E _{expt} - E _{MC} [kJ/mol f.u.]	0.0	+4.8
	Finds ground state!	Lower than expt. structure!

Improvements allow MC to access ground-state structures

CaLi₂(BH₄)₄ is Unstable w.r.t. Separate Borohydrides

Monte Carlo basin hopping easily beats the ICSD search

Unfortunately, the lowest energy structure is unstable w.r.t. to phase separation to Ca(BH₄)₂ and LiBH₄

We will not attempt to make $CaLi_2(BH_4)_4$

 Stability assessed with respect to phase mix of alkali borohydrides (kJ/mol formula unit)
 Example: LiMg(BH₄)₃ → LiBH₄ + Mg(BH₄)₂

We are half-way through approx. 100 potential high-capacity compounds

LiMg(BH₄)₃ (-22,16.0 wt%) Li₂Mg(BH₄)₄ (-44,16.5 wt%)

 $LiK(BH_4)_2$ (-15,10.7 wt%) $Li_2K(BH_4)_3$ (-20, 12.4 wt%) $LiK_2(BH_4)_3$ (-20, 9.3 wt%)

LiNa(BH₄)₂ (-16, 13.5 wt%) Li₂Na(BH₄)₃ (-24,14.9 wt%) LiNa₂(BH₄)₃ (-16,12.4 wt%)

AB(BH₄)₂ (-3) $A_2B(BH_4)_3$ (-13) **AB₂(BH₄)₃ (-6)**

We have identified two potentially stable mixed cation borohydrides and will attempt synthesis

Metal Borohydrides

- Perform full first-principles thermodynamics calculations in the promising AB(BH₄)₂ system identified through the MC screening process
- Use MC screening to complete evaluation of mixed cation borohydride stability
- ➤ Theoretical investigation of phase stability in the reversible reaction CaB₆ + 2CaH₂ + 10H₂ ↔ 3Ca(BH₄)₂ and the possible importance of oxygen in this system
- Collaboration with UIUC to understand the orthorhombic to hexagonal phase transformation in LiBH₄ (possibly important for understanding the recent experimental results of HRL, and LiBH₄ in nanoporous carbon structures)

New Hydrogen Storage Materials

Begin study of ABH, compounds, with A = Li, Na, K and B = Si, Ge and assess ability to use MC screening

Theoretical Work Prospects

Evaluate future theoretical work prospects: nanoparticle synthesis, hydrogenation, and thermodynamic constraints

METAL HYDRIDE CENTER OF EXCELLENCE New Combinatorial Method For Center

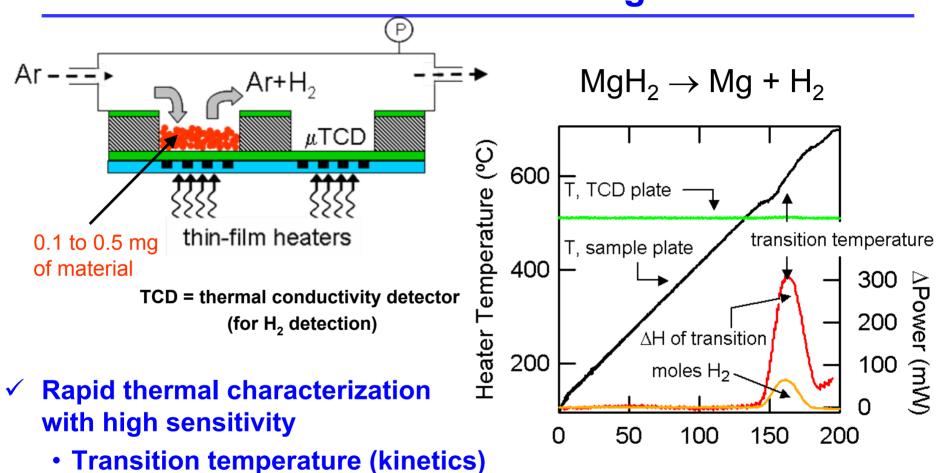
Motivation: A breakthrough material is needed....

- > Utilize arrays of micro-hotplates to synthesize and characterize materials
 - High-temperature and high-pressure processing of precursors
 - 800 °C and 2000 bar H₂
 - Micro-scale in-situ diagnostics
 - calorimetry and H₂ gas detection
- Statistical methods to formulate and analyze the sample space

Prototype 130 bar H₂ fully instrumented system

- ✓2 micro-hotplates
- ✓Calorimeter and gas composition diagnostics
- Proof Materials: MgH₂, NaAlH₄ (in progress)
- ➤Target: Bialkali Borohydrides

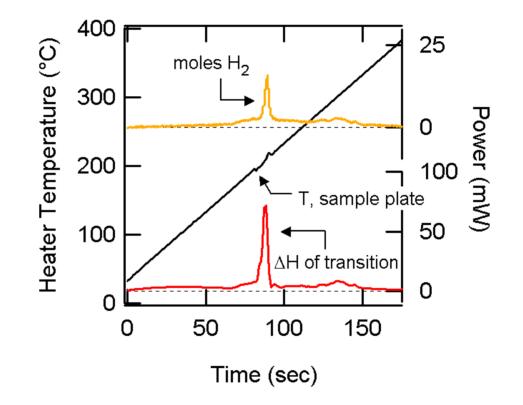
internal chamber


2 micro hot plates in 2.75" OD flange

gas flow or overpressure etched Sisample melt melt gas flow or overpressure μTCD μTCD μTCD μTCD μTCD μTCD μTCD μTCD

hotplate in air at 1000 K

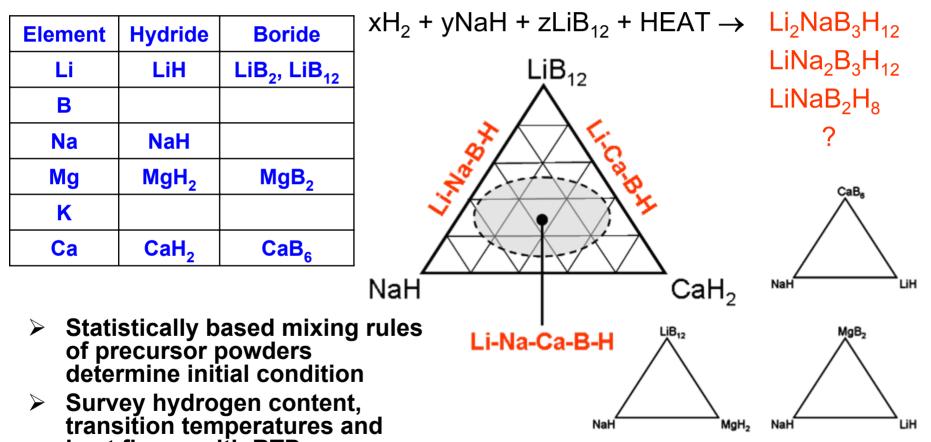
METAL ΔH Desorption, H₂ Release from MH HYDRIDE CENTER OF EXCELLENCE Detected With In-Situ Diagnostics



Time (sec)

- Enthalpy of transition
- H₂ capacity

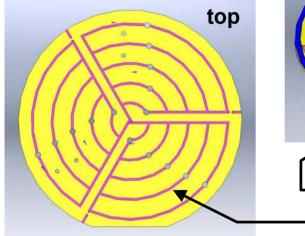
Enables a unique combinatorial approach (information rich)
 17

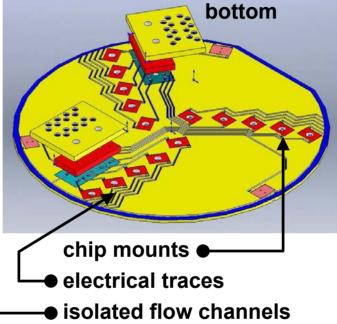


Next step: demonstrate synthesis of NaAlH₄ from Al and NaH powdered precursors

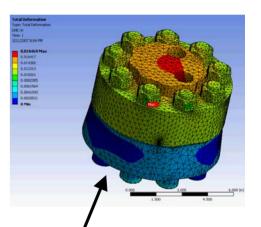
METAL HYDRIDE CENTER OF EXCELLENCE By Theoretical Predictions

Near-term targets: Bialkali borohydrides




heat fluxes with RTP
 Secondary analysis on promising combinations

AL
RIDE
TER OF
ELLENCEPath Forward: 15 Isolated AndFully Multiplexed Sample Wells



multiple micro-hotplates for combinatorial synthesis and characterization

internal flow paths, hotplates, and circuitry mounted on Cuclad PTFE board

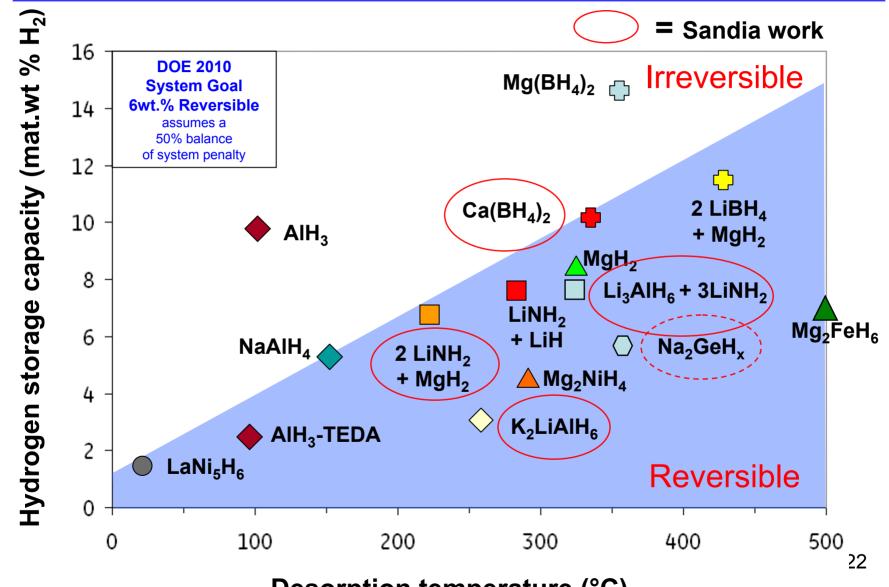
First generation 2000 bar vessel in design phase

- 15 sample hotplates, 3 gas detectors
- Numerical (Finite Element) stress analysis complete
- Ultra-high pressure (4000 bar) flow system assembled and in use

Summary FY2007 Accomplishments

Borohydrides

- > New solid-state synthesis route and characterization of $Ca(BH_4)_2$
- > Showed reversibility of Ca(BH₄)₂ at high H₂-pressures (<700 bar)
- Attempt to produce solvent-free adducts via solvent synthesis
- MC approach improved, ground state structures being found
- Bialkali borohydrides explored with MC method
- Completed phase stability study of Li-B-H system (with UIUC)


New Hydrogen Storage Materials

- > New ternary Ge-H compound obtained by High P, T sintering
- > Developed synthesis strategies for rapidly assessing promising hydrides
- Completed Study of LiNH₂/LiAlH₄ system (see extra slides)

High-throughput Screening

- Built 130 bar, 2 hotplate prototype system for initial evaluation
- Designed 2000 bar, 18 hotplate system for eventual use
- > Validated Diagnostics (H_2 gas detection and calorimetry)

METAL HYDRIDE CENTER OF Status Relative to DOE Targets In Sandia CENTER OF Status Relative to DOE Targets In Sandia Laboratories

Original plot from GE

Desorption temperature (°C)

Borohydrides

- Explore kinetics, thermodynamics and cycle life of Ca(BH₄)₂ Go/no-go in Dec-07
- Synthesize bialkali borohydrides predicted by MC method
- Provide high-pressure facility for MHCoE partners in exploring reversibility of other metal borohydrides

New Hydrogen Storage Materials (Na-Ge-H etc)

- Optimize solid-state synthesis routes at the high-pressure station to increase yield and to discover new materials
- Investigate structural and hydrogen sorption properties
- Go/no-go decision in Dec-07 depends on the potential of the new materials

High-throughput Screening

Synthesize and characterize alanate from Na, NaH, and Al powders

Synthesize and characterize bialkali borohydrides, guided by theory

Borohydrides

Continue optimizing performance of calcium borohydride and also synthesize bialkali borohydrides and explore their reversibility based on theoretical predictions

Synthesis of New Complex Anionic Materials

Discover new complex anionic materials by ball milling and sintering under high H₂-pressure and down-select the most promising materials guided by theory

High-throughput Screening

Continue exploring mixed alkali borohydrides, other promising candidates guided by theory

Nanoengineering

Explore possibilities to design alternative nanostructured metal hydrides to improve hydrogen storage properties