

Lightweight Intermetallics for Hydrogen Storage

DOE Award #: DE-FC3605GO15062

J.-C. Zhao (PI)

Matt Andrus, Jun Cui, Yan Gao, Sergei Kniajansky,

John Lemmon, Tom Raber, Job Rijssenbeek,

Gosia Rubinsztajn, & Grigorii Soloveichik

GE Global Research

May 16th, 2007

- A Member of the DOE Metal Hydride Center of Excellence -

This presentation does not contain any proprietary or confidential information

Project ID: ST16

Program Overview

Timeline

- Project start date: FY05
- Project end date: FY09
- Percent complete: 40%

Barriers

- Right heat of formation
- Absorption / desorption kinetics
- Reversibility for borohydrides

Budget

- Total Project Funding: \$3.47M
 - DOE Share: \$2.78M
 - GE Share: \$0.69M
- Funding Received for FY06 \$450K (DOE), \$112K (GE)
- Funding Received for FY07 \$375K (DOE), \$100K (GE)

Partners/Collaborations

- Member of DOE MHCoE
- Collaborations with ORNL, JPL, Caltech, UIUC, CMU, U. Pitt, SNL, Univ. Nevada

Objectives

Overall	Discover and develop a high capacity (> 6 wt.%) lightweight hydride capable of meeting or exceeding the 2010 DOE/FreedomCAR targets.
FY05	 Develop a combinatorial synthesis and high-throughput screening methodology for metal hydride discovery
	 Identify hydrides from combinatorial samples and validate them through gram-quantity sample tests
FY06	 Identify the crystal structures of Mg(BH₄)₂ using XRD, neutron diffraction and computer modeling
	 Perform combinatorial and computational screening of catalysts and dopants for Mg(BH₄)₂
FY07	 Perform combinatorial and computational screening of catalysts, dopants and <u>complexes</u> for Mg(BH₄)₂
	 Explore ways to make the materials reversible

GE downselected Mg(BH₄)₂ family borohydrides for further exploration

$Mg(BH_4)_2$ Desorption

 $Mg(BH_4)_2$ (14.8 wt.% H theoretical)

Mg(BH₄)₂ Desorption

Complimentary data from 4 types of experiments

Mg(BH₄)₂: Initial NMR Measurements

Samples: GE-103: Mg(BH₄)₂ GE103D: desorbed Mg(BH₄)₂

- Certainly remarkable structural change around boron elements is observed via ¹¹B MAS NMR
- The ¹¹B peak for Mg(BH₄)₂ is very close to that for LiBH₄ (i.e., with similar BH₄⁻ ion environments).
- The desorbed sample shows the formation of "amorphous" boron & some MgB₂ (peak at ~100 ppm).
- The quantity of MgB₂ is minor in GE-103D & seems to be absent in GE-103, which is only Mg(BH₄)₂.
- ¹¹B CPMAS NMR with protons on GE-103D indicated that the main peak at ~ 0 ppm is protonated, suggesting formation of amorphous boron with some H attachment. More study underway.
- The full widths of the ¹¹B for GE-103 and GE-103D are very different & also different from reference amorphous boron. This reflects significant differences in the quadrupolar interactions for this nucleus
 - giving us another tool to extract information on the local structure and bonding parameters.

Measurements performed by Sonjong Hwang and Bob Bowman

Mg(BH₄)₂: Crystal Structures & Decomposition

Mg(BH₄)₂ LT structure

LT-phase, viewed along the hexagonal a-axis. Color schemes represent the MgB_4 tetrahedron at different projection on the a-axis.

Hexagonal, corner-shared Mg(BH_4)₄ tetrahedrons (Mg: center, BH_4 : vertex). Tetrahedral BH_4 (B: center, H: vertex). B-H bond length: 1.12 Å. Mg-B bond lengths: 2.34 -2.47 Å. Mg is bonded to 8 H.

Crystal structure ID is essential for computational screening of dopants

LT Mg(BH₄)₂

- Hexagonal $P6_1$
- *a* = 10 Å, *b* = 10 Å, *c* = 37 Å
- $V = 3435 \text{ Å}^3$; Z = 30
- Density = 0.785 calc

The fit of experimental and calculated powder diffraction data by Rietveld refinement for the LT $Mg(BH_4)_2$ phase. The high-angle data are enlarged 5x for clarity.

In collaboration with J.H. Her and P. Stephens at SUNY Stony Brook

Mg(BH₄)₂ HT structure нт Mg(BH₄)₂ • Orthorhombic – Fddd

HT phase, viewed along the orthorhombic c-axis.

magination at work

Orthorhombic, corner-shared Mg(BH₄)₄ tetrahedrons (Mg: center, BH₄: vertex). The BH₄ unit is also tetrahedral (B: center, H: vertex). B-H bond length: 1.14 Å. Mg-B bond lengths: 2.34 - 2.47 Å. Mg is bonded to 8-12 H.

In collaboration with J.H. Her and P. Stephens at SUNY Stony Brook

a = 37 Å, *b* = 18.5 Å, *c* = 11 Å

Density = 0.7 meas.; 0.76 calc

The fit of experimental and calculated

refinement for the HT Mg(BH₄)₂ phase.

The high-angle data are enlarged 8x

for clarity.

80000

\$ 60000

8 40000

LION 20000

10000

-10000

Difference

X 8

powder diffraction data by Rietveld

 $V = 7550 \text{ Å}^3; \quad Z = 64$

Mg(BH₄)₂: Catalyst Screening Results

- Catalyst screening performed for many compositions
- The catalyst precursors Ti(BH₄)₃, CpTi(BH₄)₂, Cp₂TiBH₄ and Cp₂ZrBH₄ reduce Mg(BH₄)₂ decomposition temperature by up to 50 °C
- No catalyst found yet to enable $MgH_2 + 2B + 4H_2 \rightarrow Mg(BH_4)_2$ reaction

Mg(BH₄)₂: Vapor Pressure

 $Mg(BH_4)_2(s) \rightarrow Mg(BH_4)_2(g) + H_2$

Measurement performed by Dhanesh Chandra

<u>Summary</u>

- No detrimental cations effusing out – stable
- Low Vapor pressures observed up to ~250°C
- ~98% of Pressure is due hydrogen evolution
- ➤ P_{Mg(BH4)2} = 2.03x10⁻⁷ atm (225°C) (2x10⁻² Pa)
- Measured Average MW: 2.42 g/mol of effusing gas between 25°C and 250°C

1000/T(K)

Cleanest borohydride tested for vapor pressure

A BYA

12

Mg(BH₄)₂(NH₃)₂ Structure

 $Mg(BH_4)_2(NH_3)_2$: orthorhombic (*Pcab*; a = 17.487Å, b = 9.413Å, c = 8.732Å. It consists of isolated tetrahedra of $Mg(BH_4)_2(NH_3)_2$. The tetrahedra are weakly connected via B-H---H-N "hydrogen" bonds to form three-dimensional network.

In collaboration with J.H. Her and P. Stephens at SUNY Stony Brook

$Mg(BH_4)_2(NH_3)_2$ Desorption

- 10 wt.% H released by 225°C, 13 wt.% total, 16 wt.% theoretical
- Assumes H₂ is only gas released
- Only partially reversible see slide 16

$Mg(BH_4)_2(NH_3)_2$: partial recharging?

- No change seen in XRD most phases amorphous
- Recharging beyond Mg to MgH₂, but not fully reversible

Mg(BH₄)(AIH₄): Synthesis & Decomposition

 $2 \text{ MgCl}_2 + \text{LiAIH}_4 + \text{LiBH}_4 \xrightarrow{\text{Et}_2\text{O}} \text{Mg(BH}_4)(\text{AIH}_4) + \text{Li}_2\text{MgCl}_4$

- Substantial decrease in T_{des} comparing to Mg(BH₄)₂
- Low wt. % hydrogen due to the presence of Li₂MgCl₄

Attractive desorption temperature & capacity (11.4 wt.% H theoretical)

Summary: Status vs DOE Targets

Summary

- Mg(BH₄)₂ crystal structure identification accomplished enable more realistic theoretical predictions of dopants & energistics
- Combinatorial screening found effective catalyst precursors that reduce the T_{des} of Mg(BH₄)₂ by 50°C.
- Mg(BH₄)₂(NH₃)₂ synthesized & crystal structure identified
- Catalyzed Mg(BH₄)₂(NH₃)₂ desorption starts at 80-90°C & can complete at <300°C, giving 13 wt% H (16 wt%H theoretical)
- Mg(BH₄)(AlH₄) desorption starts at ~100°C & completes at 250°C (11.2 wt%H, theoretical)
- Collaborations ongoing with MHCoE partners to explore mechanisms and ways to reversibility

Future Work

- <u>FY07</u>
- Combinatorial screening of dopants and catalysts for Mg(BH₄)₂(NH₃)₂, Mg(BH₄)(AlH₄), & Mg(BH₄)₂
- Computational predictions of dopants for these hydrides
- Borane & high P reversibility experiments
- Mechanistic understanding for reversibility clues
- Go/No-Go for Mg(BH₄)₂

<u>FY08</u>

- Continue on catalyst and doping study of Mg(BH₄)₂(NH₃)₂, Mg(BH₄)(AlH₄), & Mg(BH₄)₂ to improve reversibility & kinetics
- Perform system-level evaluation of properties such as cycling stability/degradation, thermal conductivity
- Go/No-Go for Mg(BH₄)₂(NH₃)₂ & Mg(BH₄)(AlH₄) reversibility:
 < 400°C & < 200 bar

imagination at work

ecomagination

