

First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

J. Karl Johnson University of Pittsburgh David S. Sholl Carnegie Mellon University 16 May 2007

Project ID # ST17

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: FY05
- Project end date: FY10
- Percent complete: 40%

Budget

- Requested total: \$1.38M (DOE)
- Cost sharing: 20%
- FY06 \$175k (DOE)
- FY07 \$218k (DOE) requested

Barriers

- Identify materials with high gravimetric and volumetric densities
- Identify materials with favorable kinetics

Partners

- Cal Tech, GE, HRL, U. Hawaii, JPL, NIST, Sandia, Stanford, UIUC, U. Utah
- Coordination of theory work within MHCoE through the theory working group

Overall Objectives

- Compute thermodynamics of metal hydride systems
- Compute interfacial properties of hydrides
- Address fundamental processes in hydrogenation

Specific Objectives for FY06-FY07

- Identify promising complex hydride materials through computational screening of the heat of reaction, ΔH
- Develop an automated approach for identifying all possible compounds from a given set of reactants and products
- Screen doped hydrides for phase stability
- Initiate calculations for ΔH of substituted (doped) complex hydrides, including Mg(BH₄)₂ and Ca(BH₄)₂
- Compute surface reactions as relating to poisoning and initial kinetics of hydrogenation/dehydrogenation
- Contribute to the development of CALPHAD databases for metal hydrides

Carnegie Mellon

We use Plane wave Density Functional Theory (DFT) to calculate thermodynamic properties of candidate hydride materials—DFT is sufficiently accurate to be used for screening

Planewave Pseudopotentials

- Generalized Gradient Approximation DFT (PW91)
- Convergence reached with energy cutoff and *k*-space sampling
- All solid state structures fully optimized within experimental space group

Enthalpy Changes (neglecting zero point energies) ∆**U**₀

PHONON code¹ direct lattice method

Changes in *Gibbs Free Energy* <mark>∆G</mark>

New Hydride Reactions Identified

Accomplishments:

DFT-based Database for Destabilized Hydrides

Alapati, Johnson, and Sholl, *J. Phys. Chem. B* **110** (2006) 8769; *J. Phys. Chem. C* **111** (2007) 1584; *Phys. Chem. Chem. Phys.*, **9** (2007) 1438

We have optimized the crystal structures of >160 solid materials listed in Wycoff, Pearson, or ICSD comprised of Al, B, Ca, Li, Mg, Si, C, N, Sc, Ti, V or H

 $\begin{array}{l} \mathsf{Al}_{10}\mathsf{V}, \mathsf{Al}_{12}\mathsf{Mg}_{17}, \mathsf{Al}_{2}\mathsf{Ca}, \mathsf{Al}_{2}\mathsf{Ca}_{3}\mathsf{N}_{4}, \mathsf{Al}_{2}\mathsf{Ca}_{3}\mathsf{Si}_{2}, \mathsf{Al}_{2}\mathsf{Ca}\mathsf{Si}_{2}, \mathsf{Al}_{2}\mathsf{Li}_{3}, \mathsf{Al}_{2}\mathsf{Sc}, \mathsf{Al}_{2}\mathsf{Ti}, \mathsf{Al}_{3}\mathsf{Li}, \mathsf{Al}_{3}\mathsf{Li}_{12}\mathsf{Si}_{4}, \mathsf{Al}_{3}\mathsf{Li}_{8}\mathsf{Si}_{5}, \mathsf{Al}_{3}\mathsf{Sc}, \\ \mathsf{Al}_{3}\mathsf{Ti}, \mathsf{Al}_{3}\mathsf{V}, \mathsf{Al}_{4}\mathsf{Li}_{9}, \mathsf{AlB}_{2}, \mathsf{AlH}_{3}, \mathsf{AlLi}, \mathsf{AlLi}_{3}\mathsf{N}_{2}, \mathsf{AlLiSi}, \mathsf{AlMg}_{4}\mathsf{Si}_{6}, \mathsf{AlN}, \mathsf{AlSc}, \mathsf{AlSc}_{2}, \mathsf{AlSc}_{2}\mathsf{Si}_{2}, \mathsf{AlTi}, \mathsf{AlTi}_{3}, \\ \mathsf{AlV}_{3}, \mathsf{B}_{3}\mathsf{Ca}_{4}\mathsf{LiN}_{6}, \mathsf{B}\mathsf{Ca}_{3}\mathsf{N}_{3}, \mathsf{BLi}_{3}\mathsf{N}_{2}, \mathsf{BN}, \mathsf{Ca}(\mathsf{AlH}_{4})_{2}, \mathsf{Ca}_{11}\mathsf{N}_{8}, \mathsf{Ca}_{2}\mathsf{HN}, \mathsf{Ca}_{2}\mathsf{LiSi}_{3}, \mathsf{Ca}_{2}\mathsf{N}, \mathsf{Ca}_{2}\mathsf{N}_{2}\mathsf{BH}, \\ \mathsf{Ca}_{2}\mathsf{N}_{3}\mathsf{V}, \mathsf{Ca}_{3}\mathsf{AlN}_{3}, \mathsf{Ca}_{3}\mathsf{N}_{2}, \mathsf{Ca}_{3}\mathsf{N}_{3}\mathsf{V}, \mathsf{Ca}_{5}\mathsf{Si}_{3}, \mathsf{CaB}_{2}\mathsf{C}_{2}, \mathsf{CaB}_{6}, \mathsf{CaC}_{2}, \mathsf{CaCN}_{2}, \mathsf{CaH}_{2}, \mathsf{CaLi2}, \\ \mathsf{CaLiN}, \mathsf{CaLiSi}_{2}, \mathsf{CaMg}_{2}, \mathsf{CaMg}_{2}\mathsf{N}_{2}, \mathsf{CaMgSi}, \mathsf{CaN}_{6}, \mathsf{CaSi}, \mathsf{CaSi}_{2}, \mathsf{Li}_{12}\mathsf{Mg}_{3}\mathsf{Si}_{4}, \mathsf{Li}_{2}\mathsf{C}_{2}, \\ \mathsf{Li}_{2}\mathsf{CN}_{2}, \mathsf{Li}_{2}\mathsf{Si}, \mathsf{Li}_{3}\mathsf{AlH}_{6}, \mathsf{Li}_{3}\mathsf{BN}_{2}, \mathsf{Li}_{3}\mathsf{N}, \mathsf{Li}_{3}\mathsf{ScN}_{2}, \mathsf{Li}_{4}\mathsf{BN}_{3}\mathsf{H}_{10}, \mathsf{Li}_{4}\mathsf{N}\mathsf{H}, \mathsf{Li}_{5}\mathsf{B}_{4}, \mathsf{Li}_{5}\mathsf{N}_{3}\mathsf{Si}, \\ \\ \mathsf{Li}_{7}\mathsf{N}_{4}\mathsf{V}, \mathsf{Li}_{7}\mathsf{Si}_{2}, \mathsf{LiAl}(\mathsf{NH}_{2})_{4}, \mathsf{LiBC}, \mathsf{LiBH}_{4}, \mathsf{LiCN}, \mathsf{LiH}, \mathsf{LiMgN}, \mathsf{LiN}_{3}, \mathsf{LiN}_{3}\mathsf{Si}_{2}, \\ \\ \mathsf{LiNH}_{2}, \mathsf{LiSi}, \mathsf{Mg}(\mathsf{AlH}_{4})_{2}, \mathsf{Mg}(\mathsf{NCN}), \mathsf{Mg}(\mathsf{NH}_{2})_{4}, \mathsf{Mg}_{2}\mathsf{C}_{3}, \mathsf{Mg}_{2}\mathsf{Si}, \mathsf{Mg}_{3}\mathsf{BN}_{3}, \mathsf{Mg}_{3}\mathsf{N}_{2}, \mathsf{Mg}_{5}\mathsf{Si}_{6}, \\ \\ \mathsf{MgB}_{2}, \mathsf{MgB}_{2}\mathsf{C}_{2}, \mathsf{MgB}_{4}, \mathsf{MgB}_{7}, \mathsf{MgB}_{9}\mathsf{N}, \mathsf{MgC}_{2}, \mathsf{MgCN}_{2}, \mathsf{MgH}_{2}, \mathsf{MgN}_{2}\mathsf{Si}, \mathsf{MgSiN}_{2}, \mathsf{N}(\mathsf{SiH}_{3})_{3}, \\ \\ \mathsf{N}_{4}\mathsf{Si}_{3}\mathsf{-G}, \mathsf{N}_{4}\mathsf{Si}_{3}\mathsf{-B}, \mathsf{S}_{2}\mathsf{B}\mathsf{C}_{2}, \mathsf{S}\mathsf{C}_{2}\mathsf{C}_{2}, \mathsf{S}\mathsf{C}, \mathsf{S}\mathsf{C}, \mathsf{S}_{3}, \mathsf{S}\mathsf{Ca}_{3}, \\ \\ \mathsf{S}_{4}\mathsf{A}_{3}\mathsf{A}_{4}\mathsf{A}_{5}_{5}, \mathsf{S}_{5}, \mathsf{S}_{6}_{5}, \mathsf{S}_{6}, \mathsf{S}_{5}, \mathsf{S}_{5}, \mathsf{S}_{5}_{5}, \mathsf{S}_{5}, \mathsf{S}_{5}, \mathsf{S}_{5}, \mathsf{S}$

Screening Criteria for New Hydrides

DFT-based Database for Destabilized Hydrides

Alapati, Johnson, and Sholl, *J. Phys. Chem. B* **110** (2006) 8769; *J. Phys. Chem. C* **111** (2007) 1584; *Phys. Chem. Chem. Phys.*, **9** (2007) 1438

- We have computed the zero temperature heats of reaction for ~350 reactions from the set of ~160 solid materials
- The target range for ΔU_0 values is $15 \le \Delta U_0 \le 45$ kJ/mol H₂
- We expand the range to include $\Delta U_0 \le 75 \text{ kJ/mol H}_2$ in order to not miss potentially interesting reactions
- Error bars include estimate of zero-point and heat capacity effects

Multiple Promising Reactions Identified

Several new promising destabilization reactions identified – all have high storage densities and promising thermodynamics.

■ A large number of reactions (not shown) are less promising for either storage density and/or thermodynamic reasons.

- 1. Vajo et al., J. Phys. Chem. B 2005, 109, 3719; Vajo et al., J. Phys. Chem. B 2004, 108, 13977
- 2. Pinkerton et al., J. Phys. Chem. B 2005, 109, 6

Alapati, Johnson, and Sholl, J. Phys. Chem. B 110 (2006) 8769

160 - 140

Direct decomposition

Rxn 1: 3 LiNH₂+ 2 LiH + Si → Li₅N₃Si + 4 H₂; 7.16 wt.% H₂; ΔU₀ = 24-30 kJ/mol H₂ Rxn 2: LiNH₂ + MgH₂ → LiMgN + 2 H₂; 8.19 wt.% H₂; ΔU₀ = 32 kJ/mol H₂ Rxn 3: 2 LiBH₄ + ScH₂ → 2 LiH + ScB₂ + 4 H₂; 8.91 wt.% H₂; ΔU₀ = 49.7 kJ/mol H₂ Rxn 4: 2 LiBH₄ + TiH₂ → 2 LiH + TiB₂ + 4 H₂; 8.63 wt.% H₂; ΔU₀ = 22.2 kJ/mol H₂ Rxn 5: LiBH₄ + C → LiBC + 2 H₂; 11.95 wt% H₂; ΔU₀ = 43.6 kJ/mol H₂ Alapati, Johnson, and Sholl, *J. Phys. Chem. B* **110** (2006) 8769, *Phys. Chem. Chem. Phys.*, **9** (2007) 1438

Specific Promising Reactions

180

Carnegie Mellon

Carnegie Mellon

• Rnx 6 being investigated by Fang et al., but forms Mg(NH₂)₂ (see also Ozoliņš et al.)

Rxn 7 and 8 Analogous to
Vajo et al. reaction:
2 LiBH₄ + MgH₂ →

 $2 \text{ LiH} + \text{MgB}_2 + 4 \text{ H}_2$

Rxn 6: 6 LiBH₄ + CaH₂ → 6 LiH + CaB₆ + 10 H₂; 11.7 wt.% H₂; ΔU₀ = 62 kJ/mol H₂ Rxn 7: 4 LiBH₄ + MgH₂ → 4 LiH + MgB₄ + 7 H₂; 12.5 wt.% H₂; ΔU₀ = 69 kJ/mol H₂ Rxn 8: 7 LiBH₄ + MgH₂ → 7 LiH + MgB₇ + 11.5 H₂; 13.0 wt.% H₂; ΔU₀ = 75 kJ/mol H₂ Rxn 9: MgH₂ + 2 LiBH₄ + 2 C → MgB₂C₂ + 2 LiH + 4 H₂; 8.59 wt% H₂; ΔU₀ = 55.3 kJ/mol H₂ Alapati, Johnson, and Sholl, *J. Phys. Chem. B* **110** (2006) 8769, *Phys. Chem. Chem. Phys.*, **9** (2007) 1438

Calculation of Reaction Free Energies

Carnegie Mellon

Previous DFT calculations gave the T = 0 enthalpy—G(T) required for computing van't Hoff (vapor pressure) plots

Equilibrium pressure for decomposition reaction given by

$$\frac{P}{P_0} = \exp\left(\frac{-\Delta G(T)}{RT}\right).$$

T(°C)

Test Calculations for Reaction Free Energies

Good agreement with available data

Uncertainty of ±10 kJ/mol H_2 is an *empirical* estimate of uncertainty in DFT

Low enthalpies lead to very high equilibrium pressures—possible reversibility issues

3.5

 $LiNH_2 + MgH_2 \rightarrow LiMgN + H_2$

2.5

 $1000/T (K^{-1})$

 Δ H ~ 20 kJ/mol H₂ in 20 – 300 °C

 $\Delta U_0 = 32 \text{ kJ/mol H}_2$

3.0

2.0

 10^{0}

1.5

ΔG_{DFT}- 10 kJ/mol H₂

2.0

2.5

 $1000/T (K^{-1})$

 $\Delta H \sim 5 \text{ kJ/mol } H_2 \text{ in } 20 - 300 \degree C$

3.0

3.5

 10^{2}

1.5

Free Energies of New Hydrides

Alapati, Johnson, and Sholl, J. Alloys Compounds, in press

• Unfortunately, Sc is very expensive

Summary: Free Energies of New Hydrides

Alapati, Johnson, and Sholl, J. Phys. Chem. C 111 (2007) 1584; Phys. Chem. Chem. Phys., 9 (2007) 1438 14

Kinetics of Reversibility: H₂ Dissociation on Clean Mg₂Si

Carnegie Mellon

 Experiments indicate that the following reaction is not easily reversible:

 $2\mathsf{MgH}_2 + \mathsf{Si} \Leftrightarrow \mathsf{Mg}_2\mathsf{Si} + 2\mathsf{H}_2$

- DFT calculations indicate that H₂ dissociation on the clean Mg₂Si surface is facile
- Possible reasons for the lack of reversibility include
 - Oxide formation on surface
 - Formation of Si-H bonds passivate the surface
 - Mass transfer limitations in forming bulk MgH₂ from bulk Mg₂Si
- We use DFT to study oxide formation on Mg₂Si and its effect on H₂ dissociation

Kinetics of Reversibility: High Oxide Coverage on Mg₂Si

Carnegie Mellon

16

- Surface energy • calculations indicate that the Mg₂Si surface is extremely susceptible to oxidation
- The equilibrium coverage at room temperature is at least 1.75 monolayer
- Does this level of oxide formation inhibit H₂ dissociation?

Kinetics of Reversibility:

H₂ Dissociation on Oxide-covered Mg₂Si

Our calculations indicate that H₂ dissociation is suppressed on the Mg₂Si oxide surface

Dai, Sholl, & Johnson, JPCC, in press (2007)

- R. Janot et al. (*Internetallics* 2006, 14, 163) have observed reversibility by ball milling in H₂
- Ball milling may create fresh surfaces that overcome oxidation (and transport) issues
- Other kinetic issues, not readily addressable with DFT modeling, may also inhibit reversibility

Kinetics of Reversibility: Simulation Surfaces Mellon Poisoning of Metal Hydride Surfaces Carnegie Mellon

- We are studying reactions of the form $3MH + AI + 3/2H_2 \Leftrightarrow M_3AIH_6$, where M = (Li, Na, or K)
- This reaction is reversible for M=K, reversibly with a catalyst for M=Na, and not reversible for M=Li This is a clearly defined kinetic problem
- We are working with the MHCoE TheoryGroup to investigate poisoning of the MH surfaces with $\rm O_2$ and $\rm H_2O$
- We have so far found that O₂ dissociates on the LiH and NaH surfaces without a barrier (dissociative adsorption), but we have not yet found a barrierless dissociation pathway for O₂ on KH.

 $NaH + O_2$

 $KH + O_2$

Accomplishments: Computational Screening of Dopants

Carnegie Mellon

 $XH_2 + LiBH_4 \rightarrow XB_2 + LiH + 2 H_2$ for X = Mg, Ti, Sc Sc is miscible in Mg (up to ~15 at.%), but Ti is essentially immiscible in Mg

Reaction: $Mg_{24-n}H_{48}X_n + 48 \text{ LiBH}_4 \rightarrow Mg_{24-n}B_{48}X_n + 48 \text{ LiH} + 96 \text{ H}_2$

- Sc and Ti doping reduces ΔU_0
- Results similar to those reported experimentally for NaAlH₄ with Ti doping¹
- ΔU_0 reduction per 1% of X doping
 - Sc –0.54 kJ/mol H₂
 - Ti –0.78 kJ/mol H₂

DFT calculations of this sort should be useful to predicting useful dopants ¹⁹

^{1.} G. Streukens et al., Phys. Chem. Chem. Phys. 2006, 8, 2889

Effect of doping on P_{eq}

Carnegie Mellon

 $Sc_7H_{16}Ti + 16 LiBH_4 \rightarrow Sc_7B_{16}Ti + 16 LiH + 32 H_2$

- We have computed stabilities for 18 systems containing Li, B, Si, Ti, Mg, and H
- Most doped systems are unstable with respect to phase segregation except at high temperatures
- This system is estimated to be stable close to 300 K
- 12.5% Ti doping leads to ~3 kJ/mol H₂ reduction in ΔH
 - P_{eq} at 300 K
 - Undoped \rightarrow 0.3 bar
 - Doped \rightarrow 1.3 bar

Future Work

Carnegie Mellon

FY07-FY08

- Conclude development of an automated approach for identifying all possible compounds from a given set of reactants and products
- Compute surface reactions related to poisoning and initial kinetics of hydrogenation & dehydrogenation
- Complete calculations for ΔH of substituted (doped) complex hydrides, including collaborative work on Mg(BH₄)₂ and Ca(BH₄)₂
- Screen doped hydrides for phase stability
- Conclude calculations for CALPHAD databases for metal hydrides
- Explore new collaborations with BNL and Hawaii on the alanes project

Project Summary

Carnegie Mellon

- Density functional theory has been useful in identifying potentially interesting reactions and experiments are being performed on several of the predicted reactions:
 - Utah: $LiNH_2 + MgH_2$ This reaction appears to form $Mg(NH_2)_2$ (Fang et al., Ozoliņš et al.)
 - CalTech: ScH₂+2LiBH₄ & Ca(AlH₄)₂+2LiBH₄
 - JPL: ScH₂+2(ĹiBH₄)
- Free energies can be computed with accuracy within ±10 kJ/mol H₂
- One of our papers, "Using First Principles Calculations To Identify New Destabilized Metal Hydride Reactions for Reversible Hydrogen Storage", *Phys. Chem. Chem. Phys.* 9, 1438-1452 (2007), was selected by the editors of *Science* as an "Editors' Choice" article (*Science*, **315**, 1638, 2007) and was one of the top ten downloaded *PCCP* articles in March, 2007.
- We have contributed DFT data to the UIUC cluster expansion toolkit (collaboration with D. Johnson)
- DFT calculations have been used to augment CALPHAD for phase diagram calculations of the LiB system (collaboration with U. Kattner, NIST)
- Doping calculations have been performed on a number of systems and calculations are continuing on systems of specific interest to experimentalists—Mg(BH₄)₂ for GE and Ca(BH₄)₂ for Sandia
- We have begun work on examining kinetic issues related to rehydrogenation of various systems (collaboration with MHCoE Theory Group members: M. Allendorf, E. Ronnebro, E. Majzoub @ Sandia, D. Johnson & N. Zarkevic @ UIUC)
- Interfacial energy calculations were performed in collaboration with B. Clemens @ Stanford
- Predictions to be experimentally tested:
 - $MgH_2 + 2 LiBH_4 + 2 C \rightarrow MgB_2C_2 + 2 LiH + 4 H_2$
 - $\text{LiBH}_{4}^{-} + \text{C} \rightarrow \text{LiBC} + 2 \text{H}_{2}$
 - Doping of ScH₂+LiBH₄ with Ti