

Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage

Ping Liu and John Vajo HRL Laboratories, LLC Malibu, CA

- A Participant in the DOE Metal Hydride Center of Excellence -

16 May 2007

DOE 2007 Hydrogen Program Annual Review, Washington, D.C., May 15-18, 2007

> Project ID # ST18

> > 1

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start date: March 2005
- Project end date*: Feb 2010
- Percent complete*: 45% * Assumes support for Phases 1 and 2

Budget

Total Project Funding:

Phase One - 3 years:	\$1.65M
– DOE Share:	\$1.20M
 Contractor Share: 	\$0.45M
Phase Two - 2 years:	\$1.1M
– DOE Share:	\$0.8M
 Contractor Share: 	\$0.3M

• Funding for FY07:

\$117K as of 4/10/07 (DOE), \$150K (cost share)

Technical System Targets

	2007	2010
Gravimetric capacity:	4.5%	6%
Volumetric capacity:	0.036 kg/L	0.045 kg/L
Min/Max delivery temp:	-30/85°C	-40/85°C

Technical Barriers

- System weight and cost
- Large binding energies and slow H₂ sorption kinetics in light metal hydrides

Partners

- Participant in DOE MHCoE
 - U. Pitt, CMU: modeling of new systems and kinetic barriers
 - Stanford: thin film systems
 - Caltech, JPL, U. Utah, Hawaii: scaffolds
 - Intematix: catalysis

Overall

To develop and demonstrate a safe and cost-effective lightmetal hydride material system that meets or exceeds the DOE goals for reversible on-board hydrogen storage

2006/2007

- To identify and test new high capacity Li- and Mg-based destabilized hydrides
 - > Screen candidate LiBH₄ + MgX destabilized systems and evaluate energetics and kinetics
 - > Down-select systems for additional work

To apply nano-engineering methods to address kinetics limitations

- > Determine hydrogen exchange rates in nanoscale MgH₂/Si
- > Evaluate sorption kinetics and thermodynamics of LiBH₄ and Mg in carbon aerogel scaffolds
- > Assess capacity penalty for hydrides in scaffolds (can they be practical?)

Approach:

- Hydride Destabilization and Nano-engineering

Hydride Destabilization

(addresses thermodynamics)

Reduce reaction enthalpy by forming dehydrogenated alloy

- If alloy is stable w.r.t metal then hydride is destabilized
- System cycles between H-containing state and metal alloy \Rightarrow *lower* ΔH

Destabilization results in lower $\triangle H$ and $T_{1 bar}$

From Petricevic, et al., Carbon 39, 857 (2001)

Nano-engineering

(addresses kinetics)

Decrease diffusion distances, nanoporous scaffolding

- Shorter diffusion distances: faster hydrogen exchange
- More efficient catalysis pathways
- Nano-scaffolds as hosts for nanostructured hydrides:
 ⇒ structure- directing agents, mitigate particle agglomeration

Enhanced reaction rate and improved cycling

- Potential systems include: X = F, CI, OH, O, S, Se, CO₃, Si, SO₄, Cu, Ge, & Ni
 - > 12 destabilization reactions identified and characterized using HSC modeling
 - ➢ H-capacities ranging from 5.4-9.6 wt.%, T_{1 bar} from -10°C to 430 °C
 - > X = F, S, Se, CO_3 tested previously
- In FY06/07, two new systems tested, X = CI and Cu:
 - > $2\text{LiBH}_4 + \text{MgCl}_2 \leftrightarrow 2\text{LiCl} + \text{MgB}_2 + 4\text{H}_2 (5.8 \text{ wt.\%}, \text{T}_{1 \text{ bar}} = -10 ^{\circ}\text{C})$ No H₂ uptake from $2\text{LiCl} + \text{MgB}_2$ at 150 bar, up to 250 $^{\circ}\text{C}$ (T_{1bar} too low)
 - > $4\text{LiBH}_4 + \text{Mg}_2\text{Cu} \leftrightarrow 4\text{LiH} + 2\text{MgB}_2 + \text{Cu} + 6\text{H}_2 (6.0 \text{ wt.\%})$

From $4LiBH_4 + Mg_2Cu$, only trace MgB_2 formed ($4LiBH_4 + Mg_2Cu$ did not react with each other)

- Neither system is a good candidate for further work
- Results show kinetic limitations in destabilized systems

MgH₂/Si – Go/No-Go Decision Qtr 4, FY06 –

- Motivation: prototype system for nanoengineering, nearly ideal thermodynamics (T_{1bar} ~ 50 °C)
- Summary of effort to demonstrate reversibility
 - Catalysis (tested bulk metals, nanoparticle metals, and oxides for effect on dehydrogenation and hydrogenation). All improved dehydrogenation (nano-Ni best). *No hydrogenation observed.*
 - Mechanical dispersion (MgH₂ milled with excess Si to create dispersed nano-MgH₂). Onset of dehydrogenation decreased by up to 100°C. *No hydrogenation observed.*
 - Mg₂Si nanoparticles (tested samples of nano-Mg₂Si formed using nano-Si precursors, self-propagating reactions, and chemical vapor synthesis (CVS). No hydrogenation observed.
 - Mechano-chemistry (milled Mg₂Si formed by powder metallurgy and mechanical synthesis in 50 bar of hydrogen, varied milling conditions and included catalysts). *No hydrogenation observed.*

Phase separation or passivation by hydrogen* prevents hydrogenation

* suggestion by Prof. Gabor Somorjai, (MHCoE/Berkeley Hydrogen Storage meeting 3/13/07)

"No-Go" for continued work on MgH₂/Si system

- Scaffolds are effective structure directing agents for nano-scale hydrides
- Kinetics improved by limiting particle size and diffusion distances
- Thermodynamic changes possible through surface/interface energy effects
 - Initial work on LiBH₄ incorporated into carbon aerogels
 - Prototype complex hydride
- Synthesis (resorcinol/formaldehyde condensation)

- Slow kinetics

- Pore sizes (5-25 nm) and volumes $(1 - 4 \text{ cm}^3/\text{g})$

- Poor reversibility

- Relatively chemically inert
- Aerogels filled with LiBH₄ (LiBH₄@aerogel) by infiltration from melt:

HRL Dehydrogenation of LiBH₄@C-Aerogel

Aerogel lowers dehydrogenation temperatures up to 70°C
Capacity penalty reduced to 40% with high pore volume aerogel

Activation Energy for Dehydrogenation of LiBH₄@C- Aerogel

- Activation energy for dehydrogenation is reduced in aerogel
- Reaction rate (Boltzmann factor) increases by ~ 1000x at 350 °C

Quasi-equilibrium Pressure for LiBH₄@C Aerogel

Aerogel increases the equilibrium pressure of $LiBH_4$ by 10 times (at ~ 4 wt % desorbed)

Dehydrogenation Rate at 300 °C for LiBH₄@C-Aerogel

- After ~ 0.1 hr the desorption rate for the aerogel slows significantly due to the H₂ pressure
- Ratio of the initial desorption rates is 150
- Rate for control sample increases with dilution by graphite
- Initial desorption rate for aerogel sample may still be influenced by hydrogen pressure

Incorporation of LiBH₄ into the aerogel significantly increases the dehydrogenation rate

Capacity from dehydrogenation (400 °C, 2 hr) after hydrogenation (100 bar H₂, 400°C, 2 hr)

- Nickel "wetting layer" enables incorporation of Mg from melt
 Hydrogenation/dehydrogenation measurements in progress
- Significant step toward incorporating LiBH₄/MgH₂ in scaffold

Summary – FY 2006/07 –

New Destabilized Systems

 Screened new LiBH₄/MgX systems, X = CI and Cu – Destabilization reactions not observed in these systems

Nanoparticles / MgH₂-Si

- **Reversibility (hydrogenation of Mg₂Si) not achieved** tried catalysts, nanoparticles by direct synthesis and mechanical dispersion, and mechanically-induced hydrogenation
- Made "No-Go" decision, Sept. 2006

Nanoporous Scaffolds

- Evaluated large pore volume carbon aerogel reduced capacity penalty for LiBH₄ to 40% (goal is 25%)
- Measured equilibrium pressure of LiBH₄ in aerogel ~10x increase at 300°C
- **Compared rates of desorption** aerogel potentially ~150x faster at 300°C
- Incorporated Mg into carbon aerogel Ni used as wetting layer

Future Work - FY2007/08 -

New Destabilized Systems

 Explore additional LiBH₄ + MgX reactions; determine influence of X on kinetics

Nanoporous Scaffolds

- Incorporate LiBH₄/MgH₂ destabilized system into carbon aerogel
 - Measure intrinsic dehydrogenation rates of LiBH₄@C aerogel, i.e., at $P_{H_2} \rightarrow 0$
 - Test hydrogenation/dehydrogenation behavior of Mg@C aerogel; Check U. Utrecht claims
 - Add LiBH₄ to Mg@C
 - Incorporate catalysts
 - Optimize aerogel materials (with T. Baumann, LLNL), processing, and catalysts (with Utah, Hawaii, and Internatix)

Program Direction – By System –

Destabilized System	Benchmark	2006 Status	2006/07 Progress	Future
MgH ₂ /Si 5.0 wt.%, 0.083 kg/L est. T _{1 bar} =30°C	<i>Prototype system</i> <2007 goal (including system penalty)	 Kinetics too slow T (dehyd) >200°C Hydrogenation not achieved 	•Reversibility still not observed •No-go decision Sept '06	
LiBH ₄ / MgH ₂ @C aerogel 11.4 wt.%, 0.095 kg/L w/o aerogel, est. T _{1 bar} =170°C	Could meet 2010 system cap. goal (assuming 25% aerogel and 25% system penalties)	Lowered LiBH ₄ dehydrogenation temp by 70°C in C-scaffold	 Reduced capacity penalty to 40% Measured 10x equilibrium pressure Incorporated Mg into aerogel Measured > 150x reaction rate 	 Incorporate full destab. system in scaffold Optimize scaffold
LiBH ₄ / MgF ₂ 7.6 wt%, est. T _{1 bar} =150°C	Could meet 2010 system cap. goal	Hydrogen uptake ~6.5% at 300-350°C Dehydrogenation 5.3% Not fully reversible		Candidate for incorporation into scaffold
LiBH₄ / MgS 8.0 wt%, est. T _{1 bar} =170°C	Could meet 2010 system cap. goal	Hydrogen uptake ~6% at 300°C Dehydrogenation 4.3% Not fully reversible		Candidate for incorporation into scaffold
Other LiBH₄ / MgX 4-10 wt.%, est. T _{1 bar} : -10 to 430°C	Could meet 2007 goal (including moderate system penalty)	Sorption meas.: X=CO ₃ No destabilization	Sorption meas.: X=Cl, Cu No destabilization	 Test new destab. agents, X=O, OH, Ni Use nano-engineering to improve kinetics