

Synthesis and Characterization of Alanes for Automotive Applications

Jason Graetz, J. Wegrzyn, J. Reilly, J. Johnson, WM Zhou

BROOKHAVEN NATIONAL LABORATORY

Part of the DOE Metal Hydride Center of Excellence 05/17/2006

Project ID #: ST20

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: FY05
- Project end date: FY10
- 40 % complete

Budget

- Expected total project funding: – \$3.00M (DOE)
- Funding received in FY06
 - \$400K (DOE)
- Funding for FY07:

NATIONAL LABOR

– \$925K (DOE)

Barriers

MYPP Section 3.3.4.2.1 On-Board

- **Storage Barriers**
- A. Weight & Volume
- B. Cost
- C. Efficiency
- D. Durability/Operability
- E. Charge/Discharge Rates
- **R.** Regeneration Processes

Partners and Collaborators

- Project D (aluminum hydride) Lead
 JPL, U. Hawaii, ORNL, SRNL, SNL
- Chemical Hydride Center
- IPHE and IEA collaborations

 IFE (Norway), Polish Academy of Sciences, Russian Academy of Sciences, Academy of Sciences of Ukraine

Challenges and Objectives

Goal: Develop and demonstrate a hydrogen storage system that meets DOE targets using aluminum hydride as a hydrogen fuel source.

Challenge: AlH₃ thermodynamically unstable below 7 kbar (300K)

- In an AlH₃ system H₂ evolution controlled by T (rather than P) so the ability to tune decomposition kinetics will be critical Various routes exist to adjust kinetics (e.g. size & coatings)
- 2. The key issue is regeneration (hydrogenation of AI metal)
 - Multiple regeneration pathways are being investigated

Objectives:

- 1. Produce aluminum hydride with 9 wt. % H_2 and 0.13 kg H_2/L
- 2. Develop practical and economical process for the regeneration of AIH_3 from the decomposed AI.
- 3. Assist in the design for an onboard fuel tank delivery system

BNL Approach

Task 5: Management

- Coordinate MHCoE Alane subgroup
- Partnerships and reporting: supplying partners with samples (e.g. AIH₃)
- Materials characterization at unique BNL facilities (e.g. NSLS and CFN)

Why AIH₃?

- 10^{1} - Large gravimetric & volumetric capacity γ -AIH₂ **10.1 wt%** (2010 S-Target = 6.0) 10^{0} DOE target for 50 kW FC 149 g/L (2010 S-Target = 45) **Rate (g H₂/s)** 10⁻¹ Low decomposition enthalpy $\Delta H_{\alpha \Delta IH3} \approx 7 \text{ kJ/mol } H_2 (\approx 1/5 \Delta H_{\text{NaAIH4}})$ 10⁻² Dow stabilized α -AIH_a (Herley et al.) - Rapid H₂ evolution rates at low T Н 10⁻³ Meets DOE target (50 kW FC) at 115°C with 45% FC efficiency 10^{-4} (120kW at 100%) 40 60 120 160 80 100 140 Temperature (°C)
- Decomposition rates tuned through particle size and coatings
- High purity H_2 AIH₃ decomposes to AI and H_2 (no side reactions)
- Cyclability Offboard regeneration may reduce cycling problems

NATIONAL LABOR

- Regeneration will be challenging, but intrinsic energy costs are low

Progress on Regeneration

- FY06: Background studies regeneration requires a basic understanding of physics/chemistry of AIH₃
 - Crystallographic Structures of AIH₃
 - Thermodynamics
 - *P*-*T* phase diagram for α -AlH₃
 - Literature Review (selected organometallic route for exp. study)
 - Preliminary experimental design and safety review
- Program Review Feedback- focus on regeneration
- FY07 Multiple approaches to regeneration
 - Recycling route studies (e.g. LiCl splitting)
 - Organometallic route Experimental progress to date:
 - Retrofit 200 bar Parr reactor and purchased 340 bar PPI reactor
 - Preliminary studies on AIH_3 -TEDA in THF and dodecane
 - Reduced hydrogenation pressure using activated AI powder
 - Electrochemical route being investigated at SRNL
 - Supercritical fluid route being investigated at UH (proposal submitted)

Synthesis of AIH₃

- Regeneration rate and efficiency will likely be a function of crystallite size and surface condition
- Different AIH₃ morphologies easily prepared in conventional procedure

 $3LiAlH_4 + AlCl_3 + ether \rightarrow 3LiCl_{4} + 4AlH_3 \cdot 1.2[(C_2H_5)_2O] + ether$ **Desolvation Batch/Continuous Reactions Microcrystallization Reaction**

 α -AlH₃ (Dow) 50-100 μ m

 α -AIH₃ (BNL) 100-200 nm

- Surface coatings (e.g. oxides) introduced through alcohol wash

Which Structure of AIH₃ is Most Stable?

- Regeneration requires better understanding of phases and stability
- 2005 Ke et al. identified two structures of AlH₃ (orthorhombic *Cmcm* and cubic *Fd-3m*) more stable than α -AlH₃ (hexagonal) using DFT
- 2006 IFE group solved the structure of α '-AIH₃ (orthorhombic, *Cmcm*)
- 2006 Collaboration UH, BNL and IFE synthesized and solved structures of β -AIH₃ (cubic, *Fd-3m*) and γ -AIH₃ (tetragonal, *Pnnm*)
- All three phases less stable than α -AlH₃ at temperatures \geq 300K

(1) H.W. Brinks, A. Istad-Lem, B.C. Hauback, JPCB, **110** 25833 (2006); (2) H.W. Brinks, C. Brown, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (3) H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (3) H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (3) H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (3) H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (3) H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (3) H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (3) H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (3) H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (3) H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (3) H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reilly, B.C. Hauback, *JALCOM*, (2006); (4) H.W. Brinks, W. Langley, B.C. Hauback, *JALCOM*, (2006); (4) H.W. Brinks, W. Langley, B.C. Hauback, *JALCOM*, (2006); (4) H.W. Brinks, Hauback, *JALCOM*, (4) Hauback,

Formation of α -AIH₃ From the H₂ and AI

– Does α -AlH₃ transform to a more stable phase at high pressure? – What does the α -AlH₃ phase diagram look like?

- Structural studies of α -AIH₃ show no first-order phase transition at high pressure^{*}
- DFT results base on exp. lattice suggest structure is destabilized at pressure^{**}
- No hydrogenation below 573K low T region of phase diagram calculated from ΔG
- AIH₃ formation limited by thermodynamics <u>and</u> low temperature kinetics

**Funded through BES

9

Regeneration Energy Requirements and BNL Targets

In an effort to concentrate on the most promising pathways we have established two regeneration targets:

- (1) Energy required for regeneration will not exceed 30% of the fuel energy
- One mole of AlH₃ contains 360 kJ of fuel energy based on the lower heating value LHV_{H2}=120 kJ/g = 240 kJ/mol H₂. Therefore, 30% energy target equivalent to ∆E_{regen}≤ 73 kJ/mol H₂
- Direct hydrogenation of AI to form AIH₃ (298K) requires a minimum of 0.13 J for every 1.0 J of fuel energy (13% of fuel energy needed for regeneration)
- (2) Regeneration process will produce AlH₃ with at least 90% purity
- Offboard hydrogenation will utilize spent AI

Recycling Route - LiCl splitting

<u>Synthesis</u>: $AICI_3 + 3LiH \rightarrow AIH_3 + 3LiCI$

– Recycling byproducts (LiCl and Al) requires splitting 3LiCl per AlH₃:

<u>Recycling</u>: AI + 3LiCl + $3/2H_2 \rightarrow AICl_3$ +3LiH

– With perfect efficiency (AICl₃ & LiH formation energy not wasted):

 $\Delta E_{\text{recycle}} \ge 167 \text{ kJ/mol H}_2$

– Recycling AIH_3 by splitting LiCl (298K) requires a <u>minimum</u> of 0.7J for every 1J of fuel (**70% of fuel energy required for regeneration**)

– Recycling AIH₃ by splitting LiCI will not be investigated further

Liquid Organometallic Route - Overview

- Form AlH₃ complexes from Al and H₂ in organic solvents (THF, Et₂O)
- Reduce P_{eq} by forming a more stable intermediate phase
- Reaction between AI, H_2 and triethylenediamine (TEDA = $C_6H_{12}N_2$)

AlH₃
Al + H₂ +
$$N$$
 N N E.C. Ashby, JACS, (1964).

- FY07 Milestone: Improve hydrogenation kinetics & reduce required pressure
- Second step required to extract TEDA and recover pure AIH₃:

– Another route under investigation is a reversible metal-organic hydride:

Liquid Organometallic Route - Results

Organometallic hydrogenation of aluminum

 Hydrogenation of activated AI (AI*) at 300K occurred at much lower pressures than expected (no reaction with non-activated AI up to 110 bar)

- Reaction is reversible: TEDA + AI* + $H_2 \leftrightarrow TEDA$ -AI H_3 (theor. 2.1 wt% H_2)

Liquid Organometallic Route - XRD Analysis

- Powder XRD confirms 100% of AI consumed in reaction (yield near 100%) - No evidence of any phase other than TEDA-AIH₃ (no side reactions)

Liquid Organometallic Route - FTIR Analysis

NATIONAL LABORATORY

Liquid Organometallic Route Energy Requirements

Energy required to form TEDA-AIH₃ is small, but how much energy is required to break AIH₃ from TEDA to recover pure AIH₃?

Path Forward - Regeneration

Preliminary Studies:

- Crystal structures and phase stabilities (complete)
- Reproduce Ashby's reaction (complete)
- Reduce hydrogenation pressure and temperature (complete)
- Explore Activated AI powder (ongoing)

Regeneration Routes To Be Investigated:

Preparation of pure AIH₃ by isolating from alane-adduct

Examine amine/adduct substitutions
 that form less stable compounds
 Evaluate energy requirements

Reversible metal organic hydrides:

$$Al + H_2 + \bigvee_{N}^{N} \longleftrightarrow_{N}^{N}$$

Examine solvent and adduct
substitutions to determine if
capacity can be improved
Evaluate thermodynamics

Path Forward - Regeneration

Collaborations:

MHCoE Theory Group - Identify possible adduct substitutions; Search for lighter adducts that accommodate multiple AIH₃ units; amine-alane chemistry

Chemical Hydride Center of Excellence - Information exchange; Synergisms between amine-borane and amine-alane investigations **IPHE/IEA** - Fundamental high pressure studies; high pressure hydrogenation; decomposition kinetics, insitu synchrotron XRD

Decisions and Milestones:

- FY07 Milestone: Hydrogenate AI at low temp and pressure (P<70 bar)
- FY08 Go/no-go: Regeneration using organometallic approach
- FY09: Overall objective to regenerate AlH₃ with energy penalty ≤73 kJ/H₂ and a yield of ≥90% and (2) Determine mass/energy balance over 100 cycles on 5g samples

Project Summary

Goal: Develop and demonstrate a hydrogen storage system that meets DOE targets using aluminum hydride as a hydrogen fuel source.

Significant accomplishment: Direct hydrogenation of activated Al powder at P<35 bar (ten-fold reduction in pressure) with a yield near 100%

Storage Parameter	Units	2010 System Target	FY07 materials*
Gravimetric Capacity	kWh/kg	2.0	3.17(3)
	wt. % H ₂	6.0	9.5(1)
Volumetric Capacity	kWh/L	1.5	4.75(4)×
	$\mathrm{Kg}~\mathrm{H_2/L}$	0.045	0.143(2)
Desorption Temperature	°C	85	<100
Rate**(114 °C)	g/s/kW	1.0**	0.14(1) / 1.0(1)
BNL Regeneration Target	kJ/ mol H ₂	73	

* Data is based on material only, not system value; ** Based on 50kW FC with 45% efficiency for 100kg AlH₃; ^x Does not account for packing density (a conservative estimate for packing density is 50%)

