Chemical Vapor Synthesis and Discovery of H₂ Storage Materials: Li-Al-Mg-N-H System

<u>Z. Zak Fang</u> and H.Y. Sohn University of Utah May 15-18, 2007

Partners

JPL, GE, SNL, U Nevada Reno, ORNL, U Hawaii, U Pitt

This presentation does not contain any proprietary or confidential information

Project ID #: ST21

Overview

Timeline

- Start March 2005
- Finish March 2010
- Percent complete 40%

Budget

- Total project funding (Expected)
 - DOE share: \$645,438
 - Contractor share: \$165K
- Funding received: \$100K
- Funding for FY07: \$150K

Barriers

- Inadequate kinetic
 properties
- Reversible hydrogen content not sufficient
- Lack of robust synthesis methods

Partners

- JPL, GE, UNR, U Hawaii
- SNL, ORNL
- U Pitt, Internatix

Overall

- Discover new solid hydrides that meet reversibility and kinetics requirements
- Develop chemical vapor synthesis process (CVS) for production of nanosized solid metal hydrides
- Demonstrate the effectiveness and unique properties of nanosized solid hydride materials

FY06-07

- Discover and study new materials based on lithium alanates destabilized by light metal amides
- Synthesize new materials using high-energy high-pressure reactive milling process
- Synthesis of nano precursor and hydride powders using Chemical Vapor Synthesis (CVS) process

Technical Approach

- Initiate new material concepts and conduct experimental investigations based on fundamental principles of inorganic chemistry and any new knowledge or prediction made by the theory group within the Center,
- Use TGA, XRD, and FTIR as basic screening tools for rapid materials discovery and use NMR, in-situ XRD, and PCT for in-depth characterizations and understanding,
- Use high-energy high-pressure (HEHP) reactive milling to synthesize nanosized and non-equilibrium materials,
- Use Chemical vapor synthesis (CVS) process to produce nanosized precursor powders (e.g. Al, Li. Mg, LiMgN, MgB₂),
- Use CVS approach to incorporate metals in carbon aerogels.

<u>Highlights</u>

- I. Demonstrated the potential of a new Li-Al-Mg-N-H material system 6% reversible capacity at <300°C
- II. Demonstrated the potential of LiMgN a new candidate for reversible H_2 storage
- III. Significant progress on the characterization of $Li_3AIH_6+3LiNH_2$ reaction
- IV. Made nanosized AI, Li, Mg, and other precursor powders using CVS process
- V. Made a number of potential candidate materials (e.g. Mg-Ti-H) using the high-energy high-pressure (HEHP) reactive milling process

The concept: alanate destabilized by reacting with amides

Li₃AIH₆ =

LiH + AI + H₂

LiNH₂

Knowledge from prior art:

- Li₃AlH₆ decompose to LiH and H₂
- LiH releases H₂ when reacting with amide
- 1. Chen, J.; et al. J. Phys. Chem. 2001, 17, 1665
- 2. Chen, P.; et al. Nature, 2002, 420,320
- 3. Luo, W.; J. Alloys Compd., 2004, 381, 284

Two reaction systems*:

$$Li_3AlH_6 + 3LiNH_2 \longleftrightarrow Al + 3Li_2NH + \frac{9}{2}H_2$$

$$\frac{2}{3}Li_3AlH_6 + Mg(NH_2)_2 \longleftrightarrow \frac{2}{3}Al + Li_2Mg(NH)_2 + 3H_2 \qquad 6.5$$

6.5%wtH₂

7.2wt%H₂

Li₂NH+ H₂

*US Patent pending

Verification of the basic reaction hypothesis using TGA

Ref. J. Lu, Z.Z. Fang, H.Y. Sohn *J* . *Phys. Chem. B*, *110(29)*, 14236-14239, **2006**

Ref. Lu, Fang, Sohn, Bowman, & Hwang, to be submitted.

The reactions are **<u>REVERSIBLE</u>** after short cycles:

Note: Reversibility of Li_3AlH_6 is limited by itself. Mg(NH₂)₂ does not release hydrogen by itself. Combining the two allows dehydrogenation.

Understanding the reaction mechanisms:

<u>Characterizations using: XRD, in-situ XRD (GE), NMR (JPL), FTIR,</u> <u>PCT (SNL, Hy-Energy), Cycling (UNR)</u>

Study of the reaction pathways using NMR

Study of the reaction pathways using NMR

UT3-1st: Sample UT2 after rehydrogenation at 300 °C and 2000 psi UT3-2nd: Sample UT2 after rehydrogenation at 300 °C and 2500 psi

Components	Chemical shift	Rel. Quantity
	(ppm)	(%)
Al(M)	1640	5.2
AlH ₄ ⁻	98.8	8.1
Al ₂ O ₃	74.1	3.8
AlH ₆ -3	-34.6	82.9

> Conversion to Li_3AIH_6 is more than 80% based on NMR results.

Study of the reaction pathways using NMR

Li is mostly in Li₃AlH₆ form in the UT-3 sample (hydrogenated status) with small portion in LiNH₂, which confirms the regeneration of Li₃AlH₆.

Investigating the issue of ammonia generation

Thermodynamic and kinetic properties – PCT characterization:

van't Hoff plot shows the material is less stable than MgH_2 . 120 100 200°C 100°C 25°C [Bar] 2 80 Amide / Alanate LiMg Ш A5b NaAlH₄ D = Desorpt ion-Amide Pressure A = Absorpt ion1.5 60 1-5 = Cyclea = 1st SampleD4b A5b b = 2nd Sample 40 **Hy-Energy** Log P, (bar) D4a **Scientific** MgH₂ 20 DD4b 0.5 A2a LaNi₅H Mg₂NiH₄ 0 2 0 C Hy-Energy 2 Conc entration [wt. % H2] Na₃AIH₆ -0.5 Li-Amide Two plateau pressures at ~1 and CaNi₅H₆ _aNi₄AlH₅ 60 bar respectively. -1 1.5 2 2.5 3.5 3 4 1 $1000/T, (1/{^{\circ}K})$

Li₃AlH₆/3LiNH₂/4wt%TiCl₃

Cycling of Li₃AlH₆+3LiNH₂ in O₂ partial pressure:

<u>Mixture of alanate with amides shows</u> better property than LiNH₂ with LiH!

- Isotherm taken before and after 540 cycles shows a small loss in capacity ~0.6% hydrogen using 100 ppm O₂ in UHP hydrogen.
- Therefore, ammonia release is a negligible problem for this materials under the conditions of this study.
- ➢ Note that cycling Li₂NH ↔ LiNH₂ in Industrial hydrogen (with no Li Alanate) showed ~2.6% hydrogen loss after 500 cycles under similar cycling conditions*

*See UNR poster for details.

 $3\text{LiNH}_{2} + 3\text{LiH} \leftrightarrow 3\text{Li}_{2}\text{NH} + 3\text{H}_{2} \quad \text{Li}_{3}\text{AlH}_{6} \leftrightarrow 3\text{LiH} + \text{Al} + 3/2\text{H}_{2}$ $(4.9 \text{ wt}\%) \ \Delta H^{\theta} = -45 \ kJ/molH_{2} \quad (2.4 \text{ wt}\%) \ \Delta H^{\theta} = 32 \ kJ/molH_{2} \quad 15$

Role of LiH produced during the alanate+amide reaction

• Reversibility of lithium alanate is limited, partially due to the poisoning of LiH by H_2O ,

Poisoning for OH monolayer: $LiH+H_2O \rightarrow LiOH+H_2+1.30eV/H_2O*$

- Amide alone, by itself, does not release hydrogen, instead, it release NH₃, unless a catalytic agent is present reacting / decomposing NH₃,
- The combination of alanates with amides allows fresh and active LiH to react with NH₃, releasing hydrogen from both LiH and amide.

* Duane Johnson (UIUC, MHCoE theory group)

$$Li_{3}AIH_{6} \Rightarrow LiH + AI + H_{2} + LiNH_{2} \Rightarrow NH_{3} + Li_{2}NH + Li_{2}NH$$

Lithium amide destabilizes lithium alanate

The activation energy for lithium alanates (LiAlH₄ or Li_3AlH_6) to release hydrogen are lower when they are reacted with lithium amide. That is, in effect, lithium amide destabilized lithium alanates.

Summary of Li-Al-Mg-N-H Systems

<u>Li₃A</u>	<u>IH₆+</u>	- <u>3Lil</u>	NH_2

 $\frac{2/3Li_{3}AIH_{6}+Mg(NH_{2})_{2}}{2}$

Reversible H ₂ capacity:	~ 5~7wt%	Reversible H ₂ capacity:	~6 wt%
Dehydrogenation T:	<300°C	Dehydrogenation T:	<250°C
Dehydrogenation kinetics	: TBD	Dehydrogenation kinetics:	TBD
Hydrogenation kinetics:	TBD	Hydrogenation kinetics:	TBD
Plateau pressure:	1 & 60 bar	Plateau pressure:	TBD

Using the reactions of alanates and amides is a promising approach for discovering new candidate materials for reversible hydrogen storage.

Comparing Li-Al-Mg-N-H to other candidate materials

All things considered, alanate/amide combinations are still some of the more promising materials discovered to date.

	Selected reversible hydrogen storage material systems						
Properties	MgH ₂ / Ni ^{nano}	NaAlH ₄	2LiH/ LiNH ₂	MgH ₂ / 2LiNH ₂	LiBH ₄ / 1/2MgH ₂	Li ₃ AlH ₆ /3LiNH ₂	2/3Li ₃ AlH ₆ /Mg(NH ₂) ₂
Theoretical reversible wt% H ₂	7.6	6.5	10.4	5.6	11.4	7.3	6.5
Demonstrated reversible wt% H ₂	6.5	5.5~6.0	9.3	5.2	8-10	7.1	6.1
Desorp. Temp (°C)	150-250	150~250	200~450 vacuum	100~250	315-400	160-300	100~240
Adsorp. Temp (°C)	150	180	170-255	100~200	315-400	200-300	200-300
Isothermal Plateau Pressure	<1 (250)	~10 (180) ~130 (180)	0.2 (230°C) 1.0 (255°C)	46 (200 °C)	1 (255)	1 (255°C) 60 (375°C)	TBD
Kinetics	Slow	Good	Good	Good	Very Slow	TBD	TBD

Another new candidate material - LiMgN

A theoretically predicted reaction by MHCoE theorests (Alapati, Johnson, Sholl, et.al*)

 $MgH_2 + LiNH_2 \rightarrow LiMgN + 2H_2$ $\Delta H = 32kJ/molH_2$

- Theoretical 8.2% hydrogen
- No experimental verification
- Reversibility?

Note: By this reaction all the hydrogen in MgH₂ and LiNH₂ can be released. It bypasses the formation of imide $(Li_2Mg(NH)_2)^{**}$ which forms when the molar ratio of MgH₂: LiNH₂ is 2:1. Imide is too stable to be useful.

. Luo, W.; J. Alloys Compd., **2004, 381, 284

^{*.} Alapati, S.V.; Johnson, K.J., Sholl, D.S. J.Phys.Chem., 2006, 110, 8769

The potential of binary nitride - LiMgN

em

(Deg.

0

Hydrogenation of LiMgN: 138 bar, 240°C

Ref. J. Lu, Z.Z. Fang, H.Y. Sohn, *Chem. Materials*, submitted, 2007

UT5: LiMgN after hydrogenation at 138 bar and 240°C

- Hydrogenated products are complex
- Hydrogenation mechanisms are unclear

$$MgH_2 + LiNH_2 \xrightarrow{irreversible} LiMgN + 2H_2 \xleftarrow{reversible} 0.5Mg(NH_2)_2 + LiH + 0.5MgH_2$$
 2
*US Patent pending

Chemical vapor synthesis (CVS)

Chemistry principles

Aluminum nanopowder: ullet

 $2AICl_3(g) + 3Mg(g) = 2AI(s) + 3MgCl_2(g)$

Experimental Set-up

Nano powders produced to date:

Al, Li, Li/Mg, Li₃N, LiMgN, ... Precursors for metal hydrides – support the Center partners.

Materials Discovery and Development

- Continue comprehensive investigation of alanate reactions with amides and Li-Al-Mg-N-H materials including LiMgN
- Characterize hydrogen storage properties including thermodynamic isothermal plateau pressures and kinetics,
- Quantify ammonia generation and develop means to mitigate NH₃ generation

CVS and High Energy High Pressure Reactive Milling

CVS synthesis of Li/Mg powders as precursor for metal hydride
 CVS synthesis of MgB₂ to support center partners
 HEHP reactive milling synthesis of non-equilibrium metal hydrides based on Mg, Ti, Li, etc.

Summary

- Initiated and led the research effort on reactions of alanate with amides – <u>MHCoE Group C lead</u>
- Demonstrated the potential of the Li₃AlH₆ when reacting with LiNH₂ or Mg(NH₂)₂
- Demonstrated possibility of LiMgN a new candidate material for hydrogen storage.
- Nanosized metal powders including Li, Li/Mg, and Al were produced via chemical vapor synthesis (CVS) process.
- Material discovery and synthesis by high energy high pressure reactive milling is on-going