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Overview

• 2/04 – 2/08
• 80% complete

• Technical Barriers- Hydrogen 
Storage:
A. System Weight and 

Volume 
C. Efficiency
E. Charging/Discharging 

Rates
R. Regeneration Processes

• Total project $6,121,242
– DOE share $4,346,082 (71%)

• FY06 funding $1,000,000
• FY07 funding $1,025,000

Budget

Timeline
Barriers

• Current interactions:  Auto OEM’s, Argonne National Laboratory
• Anticipated interactions:  Chemical hydrides COE

Interactions
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• Development of liquid-phase hydrogen storage materials (liquid 
carriers) with capacities and thermodynamic properties that enable 
hydrogen storage systems meeting 2010 DOE system-level 
targets.  Optimization of dehydrogenation and hydrogenation 
catalysts.
– Selective, reversible catalytic hydrogenation and dehydrogenation. 

Multiple cycles of use with no significant degradation of the materials. 
– Optimal heat of dehydrogenation (10-13 kcal/mole H2), enabling the 

catalytic dehydrogenation at unprecedented temperatures (<200 oC).
– Multi-functional liquid carriers that enable autothermal

dehydrogenation.
– Low volatility (b.p. > 300 oC), enabling the use of these liquids in 

simplified systems onboard vehicles and reducing exposure to vapors.
– Enhanced rates of catalytic dehydrogenation with wash coat catalysts.

Objectives
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Approach: A regenerable organic liquid 
carrier for hydrogen storage onboard 

vehicles and stationary H2 delivery

Hydrogenated liquid Dehydrogenated liquid + 
5 mol H2 (7.2 wt. %)

catalyst, P <10 bar

+ heat (~14 kcal/mol H2)

6 mol H2, catalyst, P >50 bar

- heat (~14 kcal/mol H2)

• 19 gallons of hydrogenated liquid carrier will reversibly store 5 kg 
hydrogen at 7 wt. % and 1g/cc density

N

NNH

N
H
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H2

Power 
SourceHeat ExchangeCatalytic 

Converter
Dual Liquid

Storage Tank

LQ*H2

LQ

Δ Δ

Maximum energy 
efficiency:

by (a) recovering the 
exothermic (-ΔH) of 

hydrogenation and (b) 
utilizing the waste heat 

from the power source to 
supply the ΔH for the 

endothermic 
dehydrogenation.

Concept #1

Δ = heat

LQ*H2 = hydrogenated liquid
LQ = dehydrogenated liquid

Autothermal hydrogen 
storage:  

Organic liquid carrier 
provides hydrogen to the 

power source and supplies 
the necessary heat of 
dehydrogenation via 

selective, H2-reversible 
oxidation

Concept #2

H2

Power 
Source

Catalytic 
Converter

Dual Liquid
Storage Tank

LQ*H2

LQ

Air

Air/Steam
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Experimental Discovery Approach
• Carrier Selection

– Selection based upon 
structure/property 
relationships

• Computational Modeling
– Must use proper 

models
• Organic Synthesis

– High purity 
compounds

• Selective Hydrogenation
– 99+% selective!
– Many different types 

of molecules
• Dehydrogenation Testing

– Large variation in 
rates between 
catalysts

– Must also be 99+% 
selective

Candidate Selection 
(experience)

Computational 
Modeling

Organic 
Synthesis / 
Commercial 

Selective 
Hydrogenation 

Dehydro
Testing 

100+

50

30

15

10

5

Conceptual /

Com
putational

Experim
ental developm

ent and testing
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Technical Accomplishments/ 
Progress/Results

• Dehydrogenation catalyst development
– Development of wash coated catalysts with high 

activity
• Organic liquid carrier discovery and testing

– Towards lowering dehydrogenation temperatures
– Investigation of new carrier candidates with increased 

available H2 capacity
• A new concept:  Autothermal hydrogen storage 

with organic liquid carriers
– “Bi-functional” liquid carriers
– Highly selective catalytic oxidation
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Improved Catalyst Efficiency

• Our high-throughput catalyst testing is performed with 
slurry catalysts in small stirred tank reactors.  However, 
dehydrogenation catalyst must be utilized in a stationary 
form in end-use application onboard vehicles.

• Dehydrogenation catalysts in pelletized form (eg. in a 
packed bed reactor) are limited by mass transfer
– Effectiveness factor (% of available active metal 

catalyst) only 0.08 (reported last year)
• Thin catalyst coatings (10-20 μm) on a surface should 

improve effectiveness
• Thin coatings (wash coats) are catalysts used in 

practical reactors (eg. microreactors and monoliths) 
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Efficient Wash Coat Catalyst Developed

• Slurry reactors 
measure intrinsic 
catalyst activity

• Circulating flow 
reactor measures 
wash coat catalyst 
activity

• Model relates 
intrinsic activity to 
wash coat on a 
monolith

• High catalyst 
efficiency 
demonstrated (8X 
higher than pellets)

Hydrogen flow vs. conversion for 
dehydrogenation of perhydro-N-ethylcarbazole

in a circulating flow reactor 
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Energetics of stepwise heat of dehydrogenation 
(kcal/mol H2)

• Average β-carboline ΔH = 10.4 (cf. N-ethylcarbazole average ΔH =11.3)

• Lower ΔH enables substantial conversion at lower 
temperatures than N-ethylcarbazole; closer to PEM FC 
waste heat temperature (Desirable ΔH range is 10-13 
kcal/mol H2)

- 2 H2

- 2 H2

- 2 H2

Rh/Al2O3

160 oC, 
1200 psi H2

+ 6 H2

N

CH3

NH
N

CH3

NH

N
N

CH3

N
N

CH3

10.2

8.3

12.6
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Dehydrogenation of β-carboline

• Clean dehydrogenation observed (no byproducts), but only partial
conversion – limiting the hydrogen storage capacity

• Temperatures required for dehydrogenation are higher than predicted by 
calculated dehydrogenation energetics Conclusion:  Catalyst activity is 
limited at very low temperatures (<150 oC)

• Testing of new catalysts necessary to improve performance

N

CH3

NH

N

CH3

NH

N
N

CH3

5% Pd/C

120 200 oC
1 atm. H2

+
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Comparison of Naphthyridine Isomers (Theoretical capacity 
7.2 wt. % H2)

N

N

N

N

N
N N

N

[1,5] [1,6] [1,7] [2,6]

13.7 13.6 13.8 13.8Calc. avg. ΔH
(kcal/mol)

Melting point 
(oC)

60-62 25-27 64-65 118-120

Large melting point differences between isomers. 
Average heat of dehydrogenation similar, but....
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Energetics of stepwise heat of dehydrogenation

Large differences in heats within possible reaction 
pathways for this isomer

N
H

NH

N

NH

N
H

N

N

N

11.9 16.5

14.5
12.7

-3 H2

-3 H2

-2 H2

-2 H2

1,6-Naphthyridine, ΔH (kcal/mol)
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Dehydrogenation of 1,6-Naphthyridine

Calculation

Experiment

• >7 wt. % hydrogen evolution, but reaction pathway goes 
through non-preferred intermediate (high temperature for 
second step)

• This carrier is not optimal for complete endothermic 
dehydrogenation, but may be suitable for autothermal
dehydrogenation

NH

N
H

N
H

N

N

N
- 3 H2 - 2 H2

5% Pd/C
225 oC

1 atm. H2

5% Pd/C
275 oC

1 atm. H2



15

4,4’-Bipiperidine Dehydrogenation
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Time
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• High conversion of 4,4’-Bipiperidine with ~5 wt. % H2 evolved; 
significant amount of dimer formation
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Potential hydrogen carriers with >7 wt. % H2
CN

CN

N

CN

N
H

CH2NH2

CH2NH2

CH2NH2

+  7 H2

-  7 H2

ΔE = 20.2 / H2 ;
9.87% capacity

+  5 H2

-  5 H2

ΔE = 19.5 / H2 ;
8.77% capacity

• 9.87 wt. % H2

• Avg. ΔH = ca. 16.7 
kcal/mol H2

• 8.77 wt. % H2

• Avg. ΔH = ca. 16.0 
kcal/mol H2

• Hydrogenation of nitriles can be achieved with high 
selectivity using “base modified” catalysts

• Dehydrogenation will require higher temperatures 
than other liquid carriers (ΔH above preferred 10-13 
kcal/mol range)
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CH2NH2

CH2NH2

CN

CN

CN

CN
or

H
N N

+ +

CH2NH2

H
N

H
N

H
n

n = 1 - 6+

• ca. 3 wt. % H2 evolved under 
catalytic dehydrogenation 
conditions

• Undesired coupling of imine
(CH=NH) intermediates leads 
to cyclization and formation of 
oligomers

• Other isomers may be less 
prone to oligomerization
and/or cyclization

Dehydrogenation of 1,3-bis(methylamino)cyclohexane
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• 5.4 wt.% H2 (material basis) with no external input of heat
• Only partial conversion to the fully oxidized product is necessary 

for autothermal operation 
• Highly selective catalytic chemistry is known for all of these steps 

Autothermal H2 storage:  a new concept for 
organic liquid H2 carriers  

N

CH3

N

CH3

S S

N

CH3

N

CH3

- 6 H2

CH2OH

+ 1/2 O2
- 45 kcal/mole

CHO

+ 74 kcal/mole

CH2OH

COOH
+ 1/2 O2

- 64 kcal/mole

+ 8 H2
 - H2O

(II)

(III) (IV)

ca. 45% conversion

Offboard
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Autothermal H2 storage:  a new concept for 
organic liquid H2 carriers  
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Class of Selectively 
Oxidizable Functional 

Group

Functional Group in a 
Representative 

Molecule

Oxidative 
Dehydrogenation 

Product

Calorific Value per 
FW of Functional 
Group (kcal/gram)

Primary alcohols a. Ar-CH2OH
b. Ar-CH2OH
c. R-CH2OH

Ar-CHO
Ar-COOH
R-CHO

1.37
3.33
1.34

Secondary alcohols R-CH(OH)-R’
Ar-CH-OH-R

RR’C=O
Ar-CO-R

1.48
1.69

Primary amines R-CH2NH2 2.79

Cyclic secondary 
amines 0.53

N-Methyl tertiary 
amines

RR’N-CH3 RR’CH(O) 6.53

Sulfides to Sulfoxides R-S-R’ 0.84

Sulfoxides to Sulfones R-S(O)-R’ R(SO2)R’ 1.10

R C N

N
H

X

X

HH

H

H
H

H
N

X

X

R S R'
O

Selectively oxidizable functional 
groups for liquid carriers
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Experimental example (non-optimized):  Catalytic 
dehydrogenation and selective oxidation 

of 4,7-phenanthrolene

NH

N
H N

NH

N

N
catalyst 1 catalyst 2

230 oC
1 atm. H2

+ 5 H2

+ 2 H2O
230 oC

1 atm. air

hydrogenation catalyst

170 oC, 50 atm. H2

+ 7 H2
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Experimental example (non-optimized):  Catalytic 
dehydrogenation and selective oxidation 

of 1-(Carbazolyl)-2-Hydroxypropane

N

CH3

OH

N

CH3

O

5% Ru/Al2O3

1 atm. air
190 oC

• Very high selectivity (>99%) observed for oxidation of 
alcohol to ketone



23

Future Work
• Development of new, improved liquid carriers

– High dehydrogenation conversion <120 oC (eg. using carbolines)
• Need:  Better catalyst activity at very low temperatures

– Complete amine nitrile dehydrogenation studies
• Increase selectivity for amine nitrile dehydrogenation (eg. activated 

nitriles)
• Complete demonstration of autothermal dehydrogenation concept

– Investigate multiple functional group transformations
• alcohol ketone
• alcohol carboxylic acid

• Additional improvement of surface-supported catalysts
– Higher dehydrogenation rates
– Characterization of hydrogen quality

• We seek input from DOE AMR reviewers 
and the FreedomCAR tech. team on the 
potential value of the autothermal
dehydrogenation concept
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Project Summary

• Relevance:  Development of practical hydrogen storage 
technology with desirable capacity, safety 
characteristics, efficiency and integration with hydrogen 
production/delivery

• Approach:  Reversible, selective hydrogenation of 
organic liquid carriers.  Multiple concepts to provide heat 
to liberate hydrogen onboard vehicle.

• Technical Accomplishments:  Development of new liquid 
carriers with >7 wt. % capacity, Initial demonstration of 
autothermal hydrogen storage concept

• Future Research:  Demonstrate complete autothermal
dehydrogenation cycle with sufficient selectivity, rates.  
Complete testing of carriers with >7 wt. % capacity or 
dehydrogenation <120 oC.
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