

Hydrogen Storage by Reversible Hydrogenation of Liquid-phase Hydrogen Carriers

Alan Cooper, Guido Pez Air Products and Chemicals, Inc. 5/17/06

ST 23

This presentation does not contain any confidential or otherwise restricted information

Overview

Timeline

- 2/04 2/08
- 80% complete

Budget

- Total project \$6,121,242
 - DOE share \$4,346,082 (71%)
- FY06 funding \$1,000,000
- FY07 funding \$1,025,000

Barriers

- Technical Barriers- Hydrogen Storage:
 - A. System Weight and Volume
 - C. Efficiency
 - E. Charging/Discharging Rates
 - R. Regeneration Processes

Interactions

- Current interactions: Auto OEM's, Argonne National Laboratory
- Anticipated interactions: Chemical hydrides COE

Objectives

- Development of liquid-phase hydrogen storage materials (liquid carriers) with capacities and thermodynamic properties that enable hydrogen storage systems meeting 2010 DOE system-level targets. Optimization of dehydrogenation and hydrogenation catalysts.
 - Selective, reversible catalytic hydrogenation and dehydrogenation.
 Multiple cycles of use with no significant degradation of the materials.
 - Optimal heat of dehydrogenation (10-13 kcal/mole H₂), enabling the catalytic dehydrogenation at unprecedented temperatures (<200 °C).
 - Multi-functional liquid carriers that enable autothermal dehydrogenation.
 - Low volatility (b.p. > 300 °C), enabling the use of these liquids in simplified systems onboard vehicles and reducing exposure to vapors.
 - Enhanced rates of catalytic dehydrogenation with wash coat catalysts.

Approach: A regenerable organic liquid carrier for hydrogen storage onboard vehicles and stationary H₂ delivery

- heat (~14 kcal/mol H₂)

 19 gallons of hydrogenated liquid carrier will reversibly store 5 kg hydrogen at 7 wt. % and 1g/cc density

Experimental Discovery Approach

Carrier Selection

- Selection based upon structure/property relationships
- Computational Modeling
 - Must use proper models
- Organic Synthesis
 - High purity compounds
- Selective Hydrogenation
 - 99+% selective!
 - Many different types of molecules
- Dehydrogenation Testing
 - Large variation in rates between catalysts
 - Must also be 99+% selective

Technical Accomplishments/ Progress/Results

- Dehydrogenation catalyst development
 - Development of wash coated catalysts with high activity
- Organic liquid carrier discovery and testing
 - Towards lowering dehydrogenation temperatures
 - Investigation of new carrier candidates with increased available H_2 capacity
- A new concept: Autothermal hydrogen storage with organic liquid carriers
 - "Bi-functional" liquid carriers
 - Highly selective catalytic oxidation

Improved Catalyst Efficiency

- Our high-throughput catalyst testing is performed with slurry catalysts in small stirred tank reactors. However, dehydrogenation catalyst must be utilized in a stationary form in end-use application onboard vehicles.
- Dehydrogenation catalysts in pelletized form (eg. in a packed bed reactor) are limited by mass transfer
 - Effectiveness factor (% of available active metal catalyst) only 0.08 (reported last year)
- Thin catalyst coatings (10-20 µm) on a surface should improve effectiveness
- Thin coatings (wash coats) are catalysts used in practical reactors (eg. microreactors and monoliths)

Efficient Wash Coat Catalyst Developed

- Slurry reactors measure intrinsic catalyst activity
- **Circulating flow** reactor measures wash coat catalyst activity
- Model relates intrinsic activity to wash coat on a monolith
- High catalyst efficiency demonstrated (8X higher than pellets)

Hydrogen flow vs. conversion for dehydrogenation of perhydro-N-ethylcarbazole in a circulating flow reactor

Energetics of stepwise heat of dehydrogenation (kcal/mol H₂)

- Average β -carboline $\Delta H = 10.4$ (cf. N-ethylcarbazole average $\Delta H = 11.3$)
 - Lower ∆H enables substantial conversion at lower temperatures than N-ethylcarbazole; closer to PEM FC waste heat temperature (Desirable ∆H range is 10-13 kcal/mol H₂)

Dehydrogenation of β -carboline

- Clean dehydrogenation observed (no byproducts), but only partial conversion limiting the hydrogen storage capacity
- Temperatures required for dehydrogenation are higher than predicted by calculated dehydrogenation energetics → Conclusion: Catalyst activity is limited at very low temperatures (<150 °C)
- Testing of new catalysts necessary to improve performance

Comparison of Naphthyridine Isomers (Theoretical capacity 7.2 wt. % H_2)

Large melting point differences between isomers. Average heat of dehydrogenation similar, but....

Energetics of stepwise heat of dehydrogenation

1,6-Naphthyridine, ΔH (kcal/mol)

Large differences in heats within possible reaction pathways for this isomer

Dehydrogenation of 1,6-Naphthyridine

- >7 wt. % hydrogen evolution, but reaction pathway goes through non-preferred intermediate (high temperature for second step)
- This carrier is not optimal for complete endothermic dehydrogenation, but may be suitable for autothermal dehydrogenation

4,4'-Bipiperidine Dehydrogenation

 High conversion of 4,4'-Bipiperidine with ~5 wt. % H₂ evolved; significant amount of dimer formation

Potential hydrogen carriers with >7 wt. % H_2

- Hydrogenation of nitriles can be achieved with high selectivity using "base modified" catalysts
- Dehydrogenation will require higher temperatures than other liquid carriers (∆H above preferred 10-13 kcal/mol range)

Dehydrogenation of 1,3-bis(methylamino)cyclohexane

- ca. 3 wt. % H₂ evolved under catalytic dehydrogenation conditions
- Undesired coupling of imine (CH=NH) intermediates leads to cyclization and formation of oligomers
- Other isomers may be less prone to oligomerization and/or cyclization

Autothermal H₂ storage: a new concept for organic liquid H₂ carriers

- 5.4 wt.% H_2 (material basis) with no external input of heat
- Only partial conversion to the fully oxidized product is necessary for autothermal operation
- Highly selective catalytic chemistry is known for all of these steps 18

Autothermal H₂ storage: a new concept for organic liquid H₂ carriers

Selectively oxidizable functional groups for liquid carriers

Class of Selectively Oxidizable Functional Group	Functional Group in a Representative Molecule	Oxidative Dehydrogenation Product	Calorific Value per FW of Functional Group (kcal/gram)
Primary alcohols	a. Ar- CH₂OH	Ar-CHO	1.37
	b. Ar- CH₂OH	Ar-COOH	3.33
	c. R- CH₂OH	R-CHO	1.34
Secondary alcohols	R- CH(OH)-R '	RR'C=O	1.48
	Ar- CH-OH-R	Ar-CO-R	1.69
Primary amines	R-CH ₂ NH ₂	R-C≡N	2.79
Cyclic secondary amines	X + H + H + H + H + H + H + H + H + H +	X X N	0.53
N-Methyl tertiary amines	RR'N- CH 3	RR'CH(O)	6.53
Sulfides to Sulfoxides	R- S -R'	0 " R- S -R'	0.84
Sulfoxides to Sulfones	R- S(O) -R'	R(SO ₂)R'	1.10

Experimental example (non-optimized): Catalytic dehydrogenation and selective oxidation of 4,7-phenanthrolene

Experimental example (non-optimized): Catalytic dehydrogenation and selective oxidation of 1-(Carbazolyl)-2-Hydroxypropane

 Very high selectivity (>99%) observed for oxidation of alcohol to ketone

Future Work

- Development of new, improved liquid carriers
 - High dehydrogenation conversion <120 °C (eg. using carbolines)
 - Need: Better catalyst activity at very low temperatures
 - Complete amine \rightarrow nitrile dehydrogenation studies
 - Increase selectivity for amine → nitrile dehydrogenation (eg. activated nitriles)
- Complete demonstration of autothermal dehydrogenation concept
 - Investigate multiple functional group transformations
 - alcohol \rightarrow ketone
 - alcohol \rightarrow carboxylic acid
- Additional improvement of surface-supported catalysts
 - Higher dehydrogenation rates
 - Characterization of hydrogen quality
 - We seek input from DOE AMR reviewers and the FreedomCAR tech. team on the potential value of the autothermal dehydrogenation concept

Project Summary

- <u>Relevance</u>: Development of practical hydrogen storage technology with desirable capacity, safety characteristics, efficiency and integration with hydrogen production/delivery
- <u>Approach</u>: Reversible, selective hydrogenation of organic liquid carriers. Multiple concepts to provide heat to liberate hydrogen onboard vehicle.
- <u>Technical Accomplishments</u>: Development of new liquid carriers with >7 wt. % capacity, Initial demonstration of autothermal hydrogen storage concept
- <u>Future Research</u>: Demonstrate complete autothermal dehydrogenation cycle with sufficient selectivity, rates. Complete testing of carriers with >7 wt. % capacity or dehydrogenation <120 °C.