DOE Chemical Hydrogen Storage Center of Excellence

Novel Approaches to Hydrogen Storage: Conversion of Borates to Boron Hydrides

Project ID# ST25

S. W. Linehan, F. J. Lipiecki, A. A. Chin Rohm and Haas Company May 17, 2007

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline	Barriers
 Start: March 1, 2005 End: February 28, 2010 40 % complete 	 High cost and energy requirements for regenerating spent fuel from irreversible chemical H₂ storage systems Lack of understanding of cost and environmental impact of regeneration process

Budget									
	FY05 Actual	FY06 Actual	FY07 Budget	Total Funding					
DOE	\$275K	\$300K	\$433.8K	\$1,768K					
ROH	\$129K	\$141K	\$214K	\$822K					
Overall 68:32 DOE:ROH Split									

Objectives

Overall	Define and evaluate novel chemistries and processes to produce chemical hydrogen storage materials to meet DOE 2010 targets and with potential to meet 2015 targets							
	 Focus on energy efficient and cost-effective options for B-OH (borate) to B-H conversion 							
	 Leverage expertise and experience across Center: engineering requirements, economics, life cycle analysis 							
	Support DOE Chemical H ₂ Storage Systems Analysis Sub-Group							
FY06	Identify chemical pathways and process options							
	 Complete computational analysis of sodium borohydride (SBH) regeneration routes: chemical and electrochemical 							
	Develop experimental program							
	Center-wide							
	Engineering analysis							
	Ammonia Borane stability studies							
FY07	Provide input to DOE Go/No Go decision for SBH							
	Demonstrate laboratory feasibility							
	Estimate efficiency of process							
	Prepare preliminary SBH production/regeneration cost estimate							

Technical Approach

Identify Leading Pathways

- Develop screening and evaluation criteria specific to NaBH₄ regeneration cycles
- Review prior technical and patent literature
- Select leading NaBH₄ regeneration pathways based on theoretical energy efficiencies from reaction energetics and relevant metrics

FY07 Q1 Milestone Deliverable Determine Feasibility & Provide Input to DOE Go/No Go Decision

- Develop flow sheets and preliminary cost estimates for leading systems (ongoing)
- Demonstrate key chemical and process steps in laboratory studies (ongoing)

Results Overview

Chemical reduction of borates

- Compiled regeneration pathways
- Issued report literature review (FY07 Q1 deliverables completed)
- Developed system of metrics
- Selected systems for experimental work
- Began experimental program; SBH production confirmed

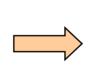
Electrochemical reduction of borates

- Investigating aqueous and non-aqueous systems with PSU
- Recent studies suggest successful production of NaBH₄

Ammonia borane stability

- Collaborated with PNNL on adiabatic calorimetry studies

Analysis


- Received and applied H2A model
- Developed conceptual regeneration processes

Result: Literature Review of NaBH₄ Routes Completed

- Metal reduction
- Electrochemistry
- Borane-based routes
- Carbothermal reduction
- Elemental synthesis
- Metathesis routes

All result in higher energy efficiency and improved metal utilization over current Schlesinger process

Review of literature and patents from 1950's to current. Over 30 chemical pathways considered, with numerous variations/combinations within each class (total >100)

Result: Regeneration Chemistries Identified

Pathway	Illustrative Chemistry
Schlesinger (current)	4NaH + $B(OCH_3)_3 \rightarrow NaBH_4 + 3NaOCH_3$
Metal reduction	$NaBO_2 + 2x/y M + 2H_2 \rightarrow NaBH_4 + 2/y M_xO_y$
Electrochemical	$B(OH)_4^- + 4H_2O + 8e^- \rightarrow BH_4^- + 8OH^-$
Carbothermal	$NaBO_2 + 2H_2 + CH_4 + O_2 \rightarrow NaBH_4 + CO_2 + 2H_2O$
Elemental synthesis	$Na + B + 2H_2 \rightarrow NaBH_4$
Borane-based	$1/2 B_2H_6 + NaH \rightarrow NaBH_4$ 2/3 B ₂ H ₆ + NaOCH ₃ → NaBH ₄ + 1/3 B(OCH ₃) ₃
Metathesis	Na + AI + $2H_2 \rightarrow NaAIH_4$ NaAIH ₄ + B(OR) ₃ $\rightarrow NaBH_4$ + AI(OR) ₃

Result: Energy Efficiency Analysis

Procedure

- Define complete reaction cycle
- Calculate ΔG° for each step to determine reaction spontaneity under range of conditions and eliminate disfavored routes
- Calculate ΔH°_{25°C} for theoretical minimum energy. Reaction enthalpy change is sum of endothermic steps minus 0-75% heat recovery of exothermic steps
- Usable energy of product and reactants based on ΔH°_{25°C} (LHV)
- Determine theoretical regeneration efficiency

Usable Energy Released in Product

Theoretical Efficiency =

Reactant Energy Value + Reaction Enthalpy Change

Result: Energy Efficiency Analysis

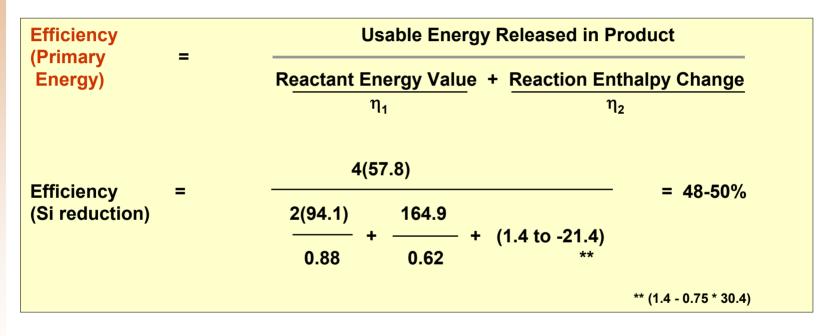
Example – Silicon Reduction of Borate

• Hydrolysis reaction: $NaBH_4 + 2H_2O \rightarrow NaBO_2 + 4H_2$

•	Regenerati	on path:	$\Delta H^{\circ}_{25^{\circ}C}$ (kcal/mol)
		$NaBO_2 + Si + 2H_2 \rightarrow NaBH_4 + SiO_2$	-30.4
		$SiO_2 + 2C \rightarrow Si + 2CO$	164.9
		$2CO + 2H_2O \rightarrow 2H_2 + 2CO_2$	1.4
	Overall	$NaBO_2 + 2C + 2H_2O \rightarrow NaBH_4 + 2CO_2$	143.5 – 166.2**

• Heating values (LHV):

H ₂ product	-57.8
C feed	-94.1


Theoretical Efficiency =	Usable Energy Released in Product (4H ₂)
	Reactant Energy Value + Reaction Enthalpy Change
= 4(5	7.8) / [2(94.1) + (143.5 to 166.2)] = 65-70%

** For 0-75% heat recovery of exothermic reactions

Result: Energy Efficiency Analysis

Primary Energy Basis

- η_1 = efficiency to produce reactant fuel (primary energy) [0.88 for coke]
- η_2 = energy efficiency of controlling endothermic reaction [0.62 for Si]

Result: Energy Efficiency Drivers Identified

- Ideal NaBH₄ regeneration <76% theoretical efficiency
 - loss due to unrecoverable exotherm for NaBH₄ hydrolysis
- Heat recovery from regen exothermic reactions important
- Process selected to recover metal has substantial impact
- Pathway must be coupled with efficient fuel source to achieve efficiency targets based on primary energy

	∆H rxn, 25С kcal/mol	Efficiency to Fuel, η	Max Efficiency (Primary)
$NaBO_2 + 4H_2 \rightarrow NaBH_4 + 2H_2O_{(g)}$	72	68% (H ₂ : SMR)	56%
$NaBO_2 + 2H_2O_{(l)} \xrightarrow{\mathbf{e}} NaBH_4 + 2O_2$	324	32 (e⁻ : 2015 US grid)	24
$NaBO_2 + 2H_2O_{(l)} \xrightarrow{\mathbf{e}} NaBH_4 + 2O_2$	324	80-100 (e⁻ : CHP - hydro)	58-71

Result: Energy Efficiency Summary

Pathway	Effic	retical iency	2015 US 0	Energy * Grid (32%)	Electrici		Primary Energy * Hydro (100%) @ Heat Recovery		
(metal recovery route)	@ Heat	Recovery 75%	0%	Recovery 75%	0%	Recovery 75%	0%	75%	
Metal Reduction Na (Downs w/Schlesinger) Na (MCEL w/Schlesinger)	45% 62%	52% 76%	9% 28%	9% 31%	13% 36%	13% 40%	23% 47%	25% 54%	
Mg (e-) Al (carbon) Ti (e-) Si (carbon) Zn (carbon)	57% 57% 68% 65% 76%	70% 67% 74% 70% 77%	16% 47% 20% 48% 58%	17% 53% 21% 50% 58%	23% 47% 29% 48% 58%	25% 53% 30% 50% 58%	39% 47% 47% 48% 58%	45% 53% 50% 50% 58%	
Electrochemical Reduction 1-step (B(OH)4- + 8e-) 2-step through NaBH(OCH3)3	71% 69%	71% 72%	17% 24%	17% 25%	26% 33%	26% 34%	50% 51%	50% 53%	
Carbothermal Reduction Carbothermal/Elemental B2O3 Reduction via Mg/Elemental	75% 77% 55%	75% 82% 70%	62% 55% 19%	62% 57% 20%	62% 55% 25%	62% 57% 28%	62% 55% 38%	62% 57% 44%	
Borane Routes BHCI2 disproportionation BH(OR)2 disproportionation B2O3 + M + H2	44% 68% 64%	65% 78% 69%	33% 44% 47%	43% 48% 50%	33% 44% 47%	43% 48% 50%	33% 44% 47%	43% 48% 50%	
Metathesis B(OR)3 + NaAlH4 Formaldehyde	53% 54%	65% 69%	14% 39%	15% 47%	20% 39%	21% 47%	34% 39%	38% 47%	

Several pathways satisfy efficiency target

Electrochemical routes require high efficiency electricity source

Additional metrics needed to select top routes

Applied Evaluation Criteria - Metrics

Criterion	Weighting
Chemistry demonstrated	Strong preference
Manufacturing cost	
 high theoretical energy efficiency 	25
 high conversion and yield 	25
 low operating severity 	5
 – few chemical reactions 	5
 – few separation / processing steps 	5
Capital cost	
 low complexity 	10
 low technical risk 	5
EHS	
 low emissions, wastes, greenhouse 	10
 high safety profile: low toxicity, 	5
corrosivity, flammability, H ₂ O-reactivity	
Logistics	
 abundant raw materials 	5 (G/NG)

Score = 1-10

Overall Score = Σ (Weighting x Score)_i

Result: Leading Regeneration Pathways Identified

Goal: Define energy efficient and cost effective process to regenerate spent borate to NaBH4 to meet DOE targets

				Meta	Redu	iction					Echem)		Borar	10	
Option Criterion	Weighting	Schlesinger	Mg	АІ	Ті	Si	Zn	Carbothermal	Elemental +	1-stop	2-step	HT melts	BCI3	TMB	M + B2O3	Metathesis
Chemistry demonstrated	Pref	Yes	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Cost/per unit H2 (NaBH4) Energy consump (theor efficiency) Raw material consump - high conv / yields Low operating severity Few chemical reactions Few separation / processing steps	25 25 5 5 5	1 3 7 5 5	5 8 8 8	7 7 8 8	7 7 8 8 8	7 7 8 8 8	9 7 8 8	9 5 9 9 9	8 7 3 8 6	7 1 10 10 10	7 3 10 8 8	7 5 8 6	4 7 5 4 3	6 3 7 7	7 3 5 4 5	3 7 7 5 5
Capital cost, \$ per unit H2 (NaBH4) Low complexity Low technical risk	10 5	6 10	8 7	8 7	8 7	8 7	8 7	8 5	6 5	9 7	8 7	6 5	5 6	7 7	5 5	5 7
EHS (environmental / health / safety) emissions, wastes, CO2 toxicity, safety, flammability, H2O-reactive other ecological components?	10 5	10 8	8 7	8 6	8 7	8 7	8 7	7 7	8 7	10 10	9 9	8 7	7 5	7 6	7 6	6 6
Logistics (supply / distribution) abundant raw materials	5	10	7	10	7	8	6	10	8	10	10	10	10	10	8	10
Total Score 485 710 745 735 740 780 725 700 675 680 645 560 565 535 560																
* Elemental - B by carbo, 600 if B by Mg	-			Ν	/leta lucti # 1		C e (B		o an ienta carl	id E al 50)	lect			B me	ora	ne, esis

Key Findings: NaBH₄ Pathways Analysis Summary

Metal reduction pathway most advanced

- Highest yields demonstrated
- Fewest processing steps for direct conversion of NaBO₂
- Potential for low severity operations
- Numerous metal candidates with satisfactory energy efficiency
- Existing large scale industry for metal recycle, but process advances will significantly improve efficiency

Electrochemical route attractive but remains elusive

- Improved yields needed from Penn State program
- Carbothermal/elemental route has high potential efficiency
 - Does not require introduction of metal reductant
- Borane pathway commercial but requires more efficient path
 - Multi-step processes involving multiple complex chemistries
 - Higher hazard class
- Metathesis route "proven" but has lower efficiency

Result: Experimental Program Established

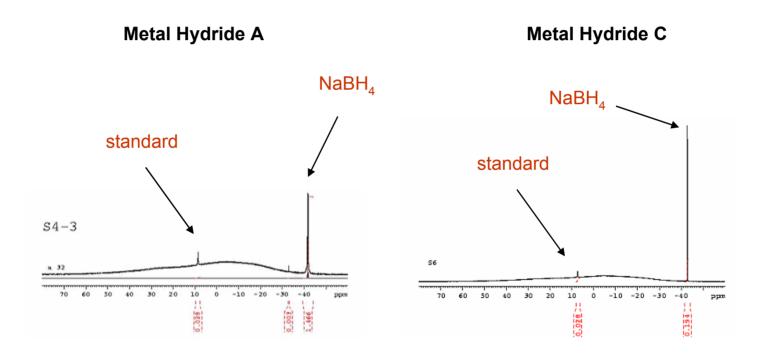
Goal: Demonstrate/validate key reaction steps to define top route

Metal reduction studies initiated at ROH

- Defined equipment and testing needs
- Screen feasibility of Mg, Al, Si, Ti, Zn and/or their hydrides to reduce $NaBO_2$
- Explore with UCDavis potential of H-terminated Si nanoparticles
- Identify operations providing optimum yields and energy efficiency
- Validate process flowsheets for more rigorous cost and energy calculations

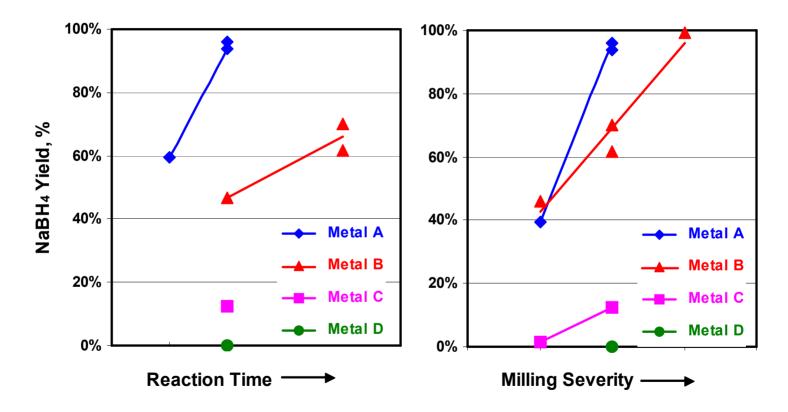
• Electrochemical reduction studies ongoing at PSU

- Provided details of prior 1-step and 2-step ROH studies to reproduce
- Shared concepts on modified electrodes, non-aqueous systems


Carbothermal reduction

Exploring options to address lack of carbothermal reduction experimental capability

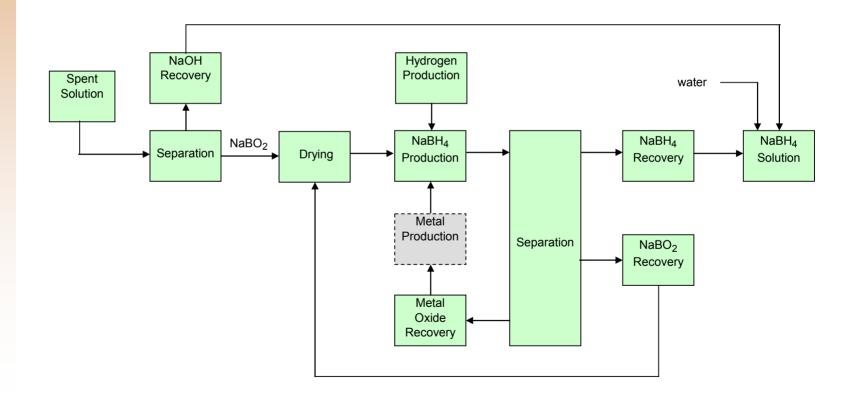
Result: Reduction of Borate Using Metal Hydride Demonstrated



Proton-decoupled ^{11}B NMR analysis confirms and quantifies NaBH_4 formation

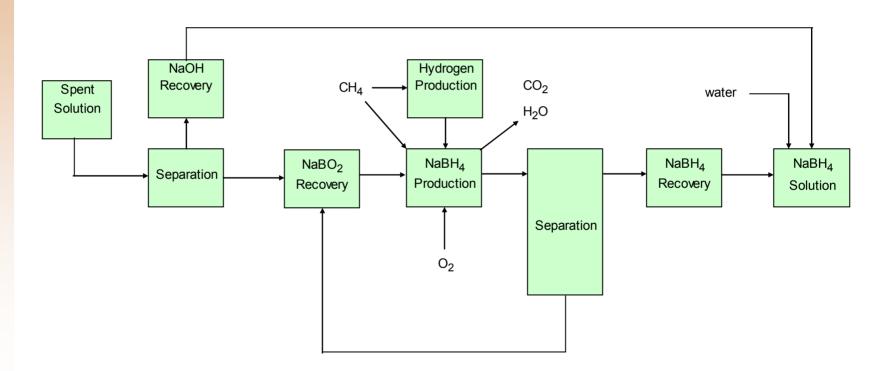
Result: Feasibility of Metal Reduction Process Established

Key Results: Reaction milling studies of NaBO₂ and metal hydride (T_{init} = 25°C)


- Order of reactivity defined for candidate metals
- Processing parameters identified to improve yields and lower costs

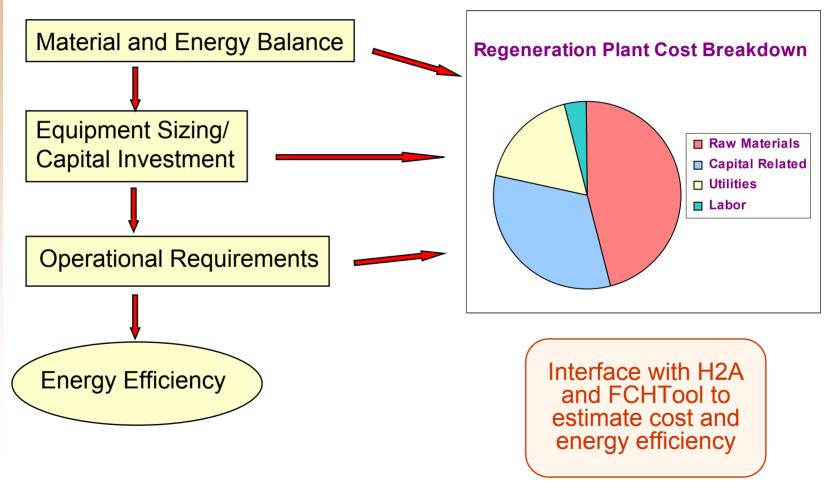
Result: Conceptual Regeneration Processes Developed

Metal Reduction: $NaBO_2 + 2x/y M + 2H_2 \rightarrow NaBH_4 + 2/y M_xO_y$


Basis: 100 mt H2/day, 470 mt NaBH₄/day

Result: Conceptual Regeneration Processes Developed

Carbothermal: $NaBO_2 + 2H_2 + CH_4 + O_2 \rightarrow NaBH_4 + CO_2 + 2H_2O$



Basis: 100 mt H2/day, 470 mt NaBH₄/day

Result: Manufacturing Cost Estimate and Analysis Underway

Future Work

• Program milestones accelerated

June 2007	Determine if laboratory demonstration of all non-commercial or unproven SBH formation steps are possible and estimate the efficiency** of the overall process. Demonstrate key chemistries to validate process flowsheets and build conceptual process to estimate cost and energy efficiency.
July 2007	Prepare preliminary SBH production/regeneration cost estimate that contains a sensitivity analysis and qualifies the estimate in terms of degree of confidence.
Sept 2007	Determine feasibility based on laboratory-scale experimental demonstration of energy-efficient** regeneration off-board. Provide results to Go/No Go Review Panel.
Phase 2 FY08- FY09	Pending outcome of DOE Go/No Go decision: Define top options. Develop and optimize process. Detail selected pathways.

Leverage Rohm and Haas competencies across Center

**Based on the primary energy consumed in regenerating the spent material and the lower heating value of hydrogen that is released on-board the vehicle. Electricity consumed during regeneration must be converted back to the primary energy on the basis of 2015 US grid.

Summary

- Preliminary estimates identify a series of chemistry paths with potential to achieve high energy efficiency in NaBH₄ regeneration
 - Metal reduction
 - Electrochemical
 - Carbothermal/elemental
- Work scope defined to generate specific information to determine cost and energy requirements for Go/No-go decision

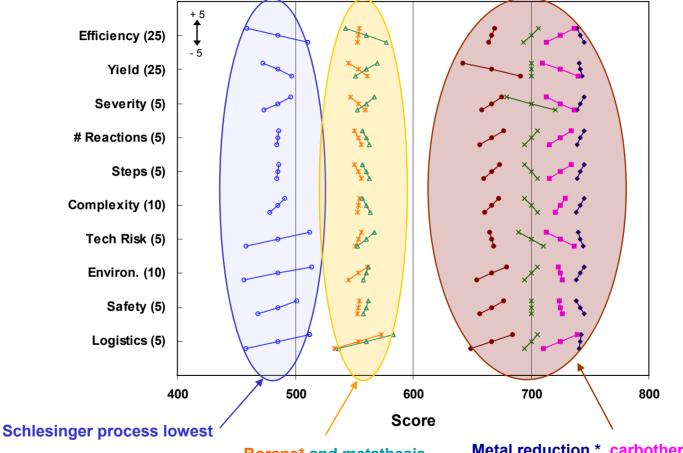
Collaboration and Technology Transfer

Partner	Technology Focus
PNNL / Millennium Cell	Engineering analysis of on-board hydrogen generation systems
LANL/ Penn State / MCEL	Electroreduction of borates to borohydride
PNNL	Ammonia borane (AB) stability
	Synthesis of metal hydrides
U Penn	Engineering assessment of AB regen processes
	Exchange of starting materials for synthesis
UC Davis	Hydrogen-terminated Si nanoparticles
U Alabama	Computational analysis of reaction pathways
TIAX / ANL	Analysis / H2A

Acknowledgements

Kebede Beshah Shih-Ying Hsu Puja Jain Leo Klawiter Joe Magee Steve Maroldo Steve November Gary Van Sciver John Yamamoto

Larry Guilbault, Innochem Inc. Duane Mazur, Electrolytica Inc.


Supplemental Information

Top Regen Pathways Superior to Others

Variation of ± 5 in criteria weighting factor has minimal effect on rankings

Borane* and metathesis paths provide only moderate improvement Metal reduction *, carbothermal, elemental, and electrochem * paths provide highest scores

* average

Metal Reduction

Features

Chemistry

 Use lower cost, lower usage reducing metal in place of sodium NaBO₂ + 2x/y M + 2H₂ → NaBH₄ + 2/y M_xO_y (or NaBO₂ + 4x/y M + 2H₂O) Convert M_xO_y back to M using existing or advanced metal technology 	 Theoretical energy efficiencies of 60-76% (Al, Si, Ti, and Zn) with no heat recovery of exothermic reactions Can achieve >50% efficiency based on primary energy Potential for single-step process Na and B feed does not need to be separated for reaction
Demonstrated	Recommendation / Plan
 Past lab studies conducted predominantly with Mg Achieve yields >95% using high intensity 	 Demonstrate high yields for metals other than Mg Identify optimal metal recovery process

Carbothermal Routes

Features

Chemistry

ROHM HAAS

 Direct carbothermal reduction using CH₄ and O₂ NaBO₂ + 2H₂ + CH₄ + O₂ → NaBH₄ + CO₂ + 2H₂O Coupled with combustion to provide favorable ΔG compared to direct NaBO₂ + CH₄ 	 Potential for high efficiency: 75% theoretical energy efficiency and 62% based on primary energy Reductant does not require regeneration High degree of uncertainty
Demonstrated	Recommendation / Plan
 Suda (Kogakuin Univ) - proposed in JP 2004/224593 Reaction has not been demonstrated; 500-700°C, <300 atm proposed to achieve 70% yield Idaho National Labs - US2006/0103318 	 Experimentation needed to confirm yields and detail individual reaction steps

Elemental Synthesis

Chemistry

Features

 Na + B + 2H₂ → NaBH₄ B produced by carbothermal reduction of NaBO₂ or Mg reduction of B₂O₃ 	 Direct production of NaBH₄, with potential for no or low byproducts High theoretical efficiency if carbothermal path feasible (77%); 55% if via Mg reduction Carbo can achieve 55-57% efficiency based on primary energy
Demonstrated	Recommendation / Plan
 Goerrig DE 1077644 (1960) - 81% yield for Na + B + H₂ (higher for K) Mg reduction of B₂O₃ is commercial route to produce elemental B B₄C produced in reaction B₂O₃ + C 	 Verify production of B in carbothermal path, possibly in combination with carbo- only pathway studies.

Electrochemistry

Features

Chemistry

 Reduction of spent borate in aqueous or organic media B(OH)₄⁻ + 4H₂O + 8e⁻ → BH₄⁻ + 8OH⁻ (cathode) NaH + B(OCH₃)₃ → NaBH(OCH₃)₃ NaBH(OCH₃)₃ + 6H⁺ + 6e⁻ → NaBH4 	 Theoretical energy efficiency = 71%, but requires efficient electricity production to achieve 50% primary energy Potential for single-step process Na and B feed does not need to be separated for reaction No need to dehydrate borate spent fuel
Demonstrated	Recommendation / Plan
 Positive confirmation in prior Rohm and Haas studies with specific electrodes 	 Support PSU studies including extension of prior ROH experimental studies

Borane-Based Routes

Features

Chemistry

ROHM HAAS

 Borane complex reacted with NaH or other Na compound 1/2 B₂H₆ + NaH → NaBH₄ 2/3 B₂H₆ + NaOCH₃ → NaBH₄ + 1/3 B(OCH₃)₃ Must integrate with most efficient and cost effective pathway to produce borane (non-NaBH₄-based) 	 Potential for Na metal/NaBH₄ < 1 Theoretical energy efficiency highest for H₂ reduction of borate ester (68%) and metal reduction of boron oxide (64%) with no heat recovery BCl₃-based route has <50% theoretical efficiency
Demonstrated	Recommendation / Plan
 ½ B₂H₆ + NaH reaction yield ~98% Aviabor (Russia) commercial NaBH₄ 	 Will be difficult to reach 50% efficiency based on primary energy.

Metathesis Routes

Chemistry

Features

 Na + AI + 2H₂ → NaAIH₄ NaAIH₄ + B(OR)₃ → NaBH₄ + AI(OR)₃ Need to separate NaBO₂ to process Na and B components separately 	 Theoretical energy efficiency = 53% using current Na and Al technologies, with no heat recovery, but <40% based on primary energy 50% reduction in metal usage compared to Schlesinger Chemistry steps all proven; low temperature reactions
Demonstrated	Recommendation / Plan
 Albermarle NaAlH₄ commercial process US4081524 (1978) Metathesis chemistry: US3063791 (1962): 65-70% yield JP02-208218 (1990): 90% yield 	 No-go due to difficulty in achieving 50% efficiency target based on primary energy.

