

Amineborane-Based Chemical Hydrogen Storage

Department of Chemistry University of Pennsylvania DOE Chemical Hydrogen Storage Center of Excellence

2007 DOE Hydrogen Program Review May 17, 2007 Project ID: ST27

This presentation does not contain any proprietary or confidential information

Project Overview

Timeline

Project Start: FY 2005 Project End: FY 2009 Percent complete: 50%

Budget

Barriers Addressed

Barriers

- A. System Weight and Volume
- B. System Cost
- E. Charging/Discharging Rates
- R. Regeneration Processes

Targets

DOE storage targets for kg-H₂/kg, kWh/L and \$/kWh

Total Project Funding: \$1,727,356 DOE: \$1,381,886 Penn: \$345,470

DOE Funding in 06: \$250,000 DOE Funding in 07: \$275,000

Collaborators on Amineborane Project

THE UNIVERSITY OF

Pacific Northwest National Laboratory

Operated by Battelle for the U.S. Department of Energy

Overall Project Objectives and Approach

Overall Center and Project Objectives

- Develop Methods for On-Demand, Low Temperature Hydrogen Release from Chemical Hydrides that Can Achieve DOE Targets
- Develop High Conversion Off-Board Methods for Chemical Hydride Regeneration

In collaboration with Center Partners the goal of this project is to develop new methods for **Amineborane Hydrogen-Release and Regeneration Reactions** that will enable their use for chemical hydrogen storage.

Penn Project Approaches to Amineborane Hydrogen-Release and Regeneration Goals

Hydrogen-Release: Use the activating effects of ionic liquids, chemical promoters and/or metal-catalysts to enhance the rate and extent of hydrogen release from ammonia borane, ammonia triborane and their mixtures.

Regeneration: Develop new methods for the off-board regeneration of BNH_x spent fuels which avoid formation of B-O bonded intermediates. Method currently under development converts BNH_x to boron trihalides which then are converted to ammonia borane via sequential coordination, reduction and displacement reactions.

2007 Objectives and Achievements

Penn Objectives for the Last Year

- Characterize the dehydrogenation products and improve the extent and rate of hydrogen release from ammonia borane (AB)
- Determine if ammonia triborane (AT) is a candidate for hydrogen storage by either hydrolytic or thermolytic reactions
- Develop new methods for amineborane regeneration

Summary of Penn Achievements Since Last Review

- Acids and metal-catalysts induce fast hydrolytic hydrogen release from AT under mild conditions with 6.1 materials-wt% H₂ achieved from concentrated aqueous solutions.
- Ionic liquids, lithium amide, lithium hydride and nitrogen bases each increase the extent and rate of thermolytic hydrogen release from both AB and AT and several systems have been identified that have potential to meet DOE targets.
- A new process for ammonia borane regeneration that avoids the formation of B-O intermediates has been developed.

Penn Research Team

PI: Larry Sneddon Postdoctoral: Laif Alden Students:

> Chang Yoon Dan Himmelberger Bill Ewing

Why Amineboranes for Hydrogen Storage?

Because of their protonic N-H and hydridic B-H hydrogens, amineboranes are unique in their ability to store and release hydrogen

Matariala wt0/

	Water lais wt /0
NH_4BH_4	$(24.5 \text{ wt\%}, 0.20 \text{ kg/L H}_2)$
NH ₃ BH ₃	(19.6 wt%, 0.16 kg/L H ₂)
$B_{3}N_{3}H_{12}$	(14 wt%, 0.11 kg/L H ₂)
$B_3N_3H_6$	(7.5 wt%, 0.06 kg/L H ₂)
NH ₃ B ₃ H ₇	(17.8 wt%, 0.14 kg/L H ₂)

DOE Total System Targets

2007: 4.5 wt%, 0.036 kg-H₂/L; **2010:** 6.0 wt%, 0.045 kg-H₂/L; **2015:** 9.0 wt%, 0.081 kg-H₂/L

Amineborane H₂-Release Can Be Achieved by Either Hydrolytic or Thermolytic Processes

Hydrolysis: Fast hydrogen release, but lower potential capacities

NaBH₄ + 4 H₂O \longrightarrow NaB(OH)₄ + 4 H₂ Int J Hydrogen Energy 2003, 28, 1095 NH₃BH₃ + 2 H₂O \longrightarrow NH₄⁺ + BO₂⁻ + 3 H₂ J. Power Sources 2006, 159, 855 NH₃B₃H₇ + 6 H₂O \longrightarrow NH₄⁺ + 3 BO₂⁻ + 2 H⁺ + 8 H₂ 9.7 wt % Thermolysis: High potential capacities, but (to date) slower hydrogen release

$$NH_{3}BH_{3} \longrightarrow BN + 3 H_{2}$$
 19.4 wt %
 $NH_{3}B_{3}H_{7} \longrightarrow "B_{3}N" + 5 H_{2}$ **17.7 wt %**

0

0

50

2006: Metals Catalyze NH₃B₃H₇ **Hydrolytic Hydrogen Release**

aqueous solution containing 5wt%-Rh/Al₂O₃.

2007: Can Ammonia Triborane Hydrolysis Be Used To Achieve DOE Targets?

Yoon, C. W.; Sneddon, L. G. J. Am. Chem. Soc. 2006, 128, 13992-3. 8

Thermolytic Hydrogen Release from Amineboranes Could Meet DOE Targets

Key questions that we have been addressing since the last review:

- How can both the extent and rate of hydrogen release from ammonia borane and ammonia triborane be increased?
- How can the dehydrogenation products be regenerated?

2007: The Extent and Rate of H₂-Release from AB and AT Can Be Increased By:

1. Ionic Liquids

2. Chemical Promoters

1. Why Ionic Liquid Solvents for Amineborane Dehydrogenations?

Ionic Liquid Solvents

Cations:

Anions:

Reactive: AICl₄⁻, Al₂Cl₇⁻

Inert: PF₆⁻, BF₄⁻, Cl⁻

N,N'-imidazolium

N-pyridinium

Advantages

- Negligible vapor pressures
- Dissolve both neutral and ionic species
- Thermally stable to elevated temperatures
- Non-coordinating anions and cations provide an inert, polar reaction medium
- Promote the formation of ionic or polar intermediates and transition states $_{11}$

2006: Ionic Liquids Increase the Rate and Extent of H₂-Release from AB and Eliminates Induction Period

+1-Butyl-3-methylimidazolium chloride

Bluhm, M. E.; Bradley, M. G.;Butterick, R.; Kusari, U.; Sneddon, L. G. *J. Am. Chem. Soc.* **2006**, *128*, 7748-9.

2007: Other Ionic Liquids Show Increased Extent and Rate of H₂-Release at 85 °C

2. 2007: Solid-State AB Releases 9.5 Mat-Wt% H₂ at 85 °C with LiNH₂ and LiH Chemical Promotors

Bluhm, M. E.; Bradley, M. G.; Sneddon, L. G. Prepr. Sym., ACS Div. Fuel Chem. 2006, 51, 571-572

2007: Studies Reveal Possible Mechanisms for AB/LiNH₂ and AB/LiH H₂-Release Reactions

First Step: Proton Abstraction to Produce an Amine Borane Anion

 $H_3BNH_3 + Li^{\oplus}NH_2^{\ominus} \longrightarrow H_3BNH_2^{\ominus}Li^{\oplus} + NH_3$ or $H_3BNH_3 + LiH \longrightarrow H_3BNH_2^{\ominus}Li^{\oplus} + H_2$ **Computational studies** of this mechanism are Second Step: Anionic Dehydropolymerization underway at Alabama $H_{3}BNH_{2}^{\Theta}Li^{\oplus} + H_{-B} - N_{-H} \xrightarrow{H_{2}} H_{3}B-NH_{2}-BH_{2}-NH_{2}^{\Theta}Li^{\oplus}$ (Dixon) $H_3B-NH_2-BH_2-NH_2^{\ominus}Li^{\oplus} + H_3BNH_3 \xrightarrow{-H_2} H_3B-NH_2-BH_2-NH_2-BH_2-NH_2^{\ominus}Li^{\oplus}$ Side Reactions Leading to the Formation of BH₄:

$$H_3BNH_2^{\ominus}Li^{\oplus} \longrightarrow -(BH_2NH_2)^- + LiH$$

 $H_3BNH_3 + LiH \longrightarrow Li^{\oplus}BH_4^{\ominus} + NH_3$

Important Conclusion: Formation of M⁺BH₄⁻ and NH₃ must be eliminated to improve H₂-release!

2007: Proton Sponge Increases H₂-Release from AB Solutions and Avoids the Formation of M⁺BH₄⁻ and NH₃

 $NH_3BH_3 + 5 mol \% PS at 85 °C in Ionic-Liquids or Tetraglyme (250 mg) (91 mg) (250 mg)$

Proton Sponge Reaction Mechanism

 $H_3BNH_3 + PS \longrightarrow H_3BNH_2^{\ominus} PSH^{\oplus}$

$$H_3B-NH_2-BH_2-NH_2^{\ominus} + H_3BNH_3 \xrightarrow{-H_2}$$

 $H_3B-NH_2-BH_2-NH_2-BH_2-NH_2^{\ominus}$ 16

2007: PS Also Enhances H₂-Release from NH₃B₃H₇ and NH₃B₃H₇/NH₃BH₃ Mixtures

Conclusion: AB/AT mixtures may prove to be better for fast hydrogen release

System Comparisons and Progress Towards DOE Storage Targets

Metrics	Hydrolysis 22 °C	Thermolysis at 85 °C					
		Solid-State			Solution-State		
	22.7 wt% aq. AT (1.1 mol%Rh)	AB/LiNH ₂ (9 mol%)	AB/LiH (17 mol%)	AB/AT(5mol%) /PS(5mol%)	AB/PS(5mol%) /bmimCl	AB/edmimCl	AB/AT(5mol%) /PS(5mol%)/bmimCl
Grav. density (Mat. wt%)	6.1, 4h	<mark>5.9, 3h</mark> 9.3, 15h	<mark>5.7, 3h</mark> 9.4, 15h	5.1, 1h 6.9, 3h	<mark>5.1, 3h</mark> 5.8, 6h	3.1, 1h 4.2, 3h 5.3, 6h	5.3, 1h 6.5, 3h
Vol. density (Kg-H ₂ /L Mat.)	0.090, 4h	<mark>0.047, 3h</mark> 0.074,15h	<mark>0.045, 3h</mark> 0.073,15h	0.044, 1h 0.059, 3h	<mark>0.047, 3h</mark> 0.054, 6h	0.018, 1h 0.023, 3h 0.030, 6h	0.049, 1h 0.060, 3h
H ₂ Flow Rate (g/s) per kg Material	0.0042, 4h	<mark>0.0055,3h</mark> 0.0017,15h	<mark>0.0053,3h</mark> 0.0017,15h	0.014, 1h 0.0064, 3h	<mark>0.0047,3h</mark> 0.0027,6h	0.0086,1h 0.0038,3h 0.0024,6h	<mark>0.015, 1h</mark> 0.0060, 3h
Kg of Mat. for 0.8 mol/sec	377, 4h	<mark>295, 3h</mark> 938, 15h	<mark>304, 3h</mark> 931, 15h	114, 1h 250, 3h	<mark>342, 3h</mark> 599, 6h	186, 1h <mark>420, 3h</mark> 670, 6h	108, 1h 267, 3h

DOE Total System Targets for Hydrogen Storage Systems

Gravimetric Density (wt%) 4.5 (2007), 6.0 (2010), 9.0 (2015) Volumetric Density (Kg-H₂/L) 0.036 (2007), 0.045 (2010), 0.081 (2015)

18

Amineborane-Based Chemical Hydrogen Storage

Regeneration

Why is Regeneration A Difficult Problem?

2006 DFT/GIAO/NMR Studies Showed That AB H₂-Release Yields A Wide Range of Products with Greatly Differing Reactivities

Bluhm, M. E.; Bradley, M. G.;Butterick, R.; Kusari, U.; Sneddon, L. G. *J. Am. Chem. Soc.* **2006**, *128*, 7748-9

Diammoniate of Diborane

Polyaminoborane

Cyclotriborazane

Polyiminoborane

Branched Polyaminoborane

Polyborazylene

Crosslinked Polyborazylene

A Viable Regeneration Method Must Be Efficient, Have Easy to Handle Reagents and Work for All Possible Spent-Fuel Species

2006: Initial Penn Regeneration Method Employed Strong Organic Acids

Digestion

 $BNH_x + CF_3CO_2H \xrightarrow{60^{\circ}C, 1h} B(O_2CCF_3)_3/B(O_2CCF_3)_4^-$

• The spent-fuel is completely digested by trifluoroacetic acid

Reduction to Borane

 $B(O_2CCF_3)_3/B(O_2CCF_3)_4^- + AlH_3NMe_2Et \xrightarrow{23^\circ, 12h}_{toluene}$

• Reduction regenerates a borane amine adduct

Major Problems

- Trifluoroacetic acid is expensive and difficult to handle
- Ammonia is not recovered
- The reduction of B-O bonds requires a strong (and expensive!) reducing agent

2007: New Penn Regeneration Process Avoids The Formation of B-O Bonds

First Step: Digestion of Spent Fuel by Super Acidic Halo-Acids

$$BNH_{x} + 4 HX \xrightarrow{AIX_{3}} BX_{3} + NH_{4}X$$
$$X = CI,Br$$

Second Step: One-Pot Conversion of BX₃ to AB

Amine-Coordination of BX₃

$$BX_3 + R_3N \longrightarrow R_3NBX_3$$

BX Reduction

 $R_3NBX_3 + 3 HMR_3 \longrightarrow R_3NBH_3 + 3 XMR_3$ M = Sn,Si

Amine Displacement by NH₃ Yields AB

 $R_3NBH_3 + NH_3 \longrightarrow H_3NBH_3 + R_3N$

2007: Step 1. Digestion. Superacidic HX/AIX₃ Solutions Digest BNH_x Spent-Fuels

HBr + 2 AlBr₃ \longrightarrow H⁺ + Al₂Br₇⁻

Farcasiu, D.; Fisk, S. L.; Melchior, M. T.; Rose, K. D. J. Org. Chem. 1982, 47, 453-7

2007: Step 2. Coordination and Reduction. B-X Bonds Can Be Reduced by HMR₃ (M = Sn, Si)

High Yield BCl₃ Reduction to Diborane by HSnBu₃ Already Reported

$$2 \text{ BCl}_3 + 6 \text{ HSnBu}_3 \xrightarrow{12 \text{ h, } 23^{\circ}\text{C}} \text{ B}_2\text{H}_6 + 6 \text{ CISnBu}_3$$
84% yield

Gaines, D. F.; Kunz, J. C.; Kulzick, M. J. Inorg. Chem. 1985, 24, 3336-8.

2007: Reduction of Amine-Coordinated BBr₃ Has Now Been Achieved. This Step Avoids the Production and Handling of Hazardous Diborane

 $Et_3NBBr_3 + 3 HSnBu_3 \longrightarrow Et_3NBH_3 + 3 BrSnBu_3$

2007: Completed Step 2. Coordination, Reduction and Displacement to Regenerate AB from BBr₃

A One-Pot 84%-Yield of AB from BBr₃ Has Been Achieved via the Reduction of Diethylaniline-BBr₃ Followed by NH₃ Exchange

Alabama (Dixon) analysis indicates regeneration efficiency for total process (Steps 1 and 2) could meet 60% DOE target, depending upon reactants and heat recovery

Collaborations and Technology Transfer

Penn work on H₂-Release/Regeneration is Highly Coordinated with Partners by Frequent "Brainstorming" Discussions, Laboratory Visits, and Sample and Measurement-Sharing. Partner Collaborations Provide Complimentary Expertise:

Penn: new H₂-release methods for AB and AT using chemical promotors and ionic liquids; solution NMR-characterization and regeneration of spent-fuel products
LANL: AB homogeneous and acid dehydrogenation catalysts and regeneration methods
PNNL: supported AB dehydrogenation catalysts and studies of key dehydrogenation steps, new hydrogen-recovery methods, solid-state NMR studies
U. of Washington: studies of fundamental amineborane coordination chemistry and mechanisms of homogeneously catalyzed AB dehydrogenation
U. of Alabama: computational studies of amineborane reaction pathways and stabilities, evaluation of the energetics of regeneration methods
Northern Arizona U.: amineborane syntheses and properties, new liquid fuels
Rohm and Haas: provides starting materials for amineborane synthesis and general expertise in boron chemistry

Future Studies will Now Rely Heavily on Industrial and National Laboratory Partners for Engineering and Scale-Up of Technologies

PNNL and LANL: Engineering assessments and implementation of both solid and liquid-
based H2-release systems and regeneration processes26Rohm and Haas: Engineering assessment and scale-up of new regeneration process26

Summary and Future Studies

Achievements

Ongoing and Future Studies

- Chemical additives, ionic liquids and metal catalysts have each been shown to increase the extent and rate of hydrogen release from amineboranes and several systems have been identified that have potential to meet DOE targets.
- Mechanistic studies indicate that LiNH_2 , LiH and Proton Sponge induce the anionic polymerization of AB, but that PS avoids the formation of LiBH_4 and NH_3 .
- A new process for ammonia borane regeneration has been demonstrated.
- Continue to develop and optimize chemical-additive systems with improved hydrogen release rates for thermolytic processes.
- Optimize mixed AB/AT and new AB/methylamine-borane processes.
- Determine which of the AB or AT dehydrogenation products have the highest regeneration activities.
- Work with Center partners to refine and optimize the new AB regeneration process.

