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Overview !'!
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Timeline Barriers Addressed
. Project Start: 3-15-05 « System weight & volume for

. 2010
* Project End: 9-30-09 + H, release rate

» Complete: ~40% Thermal management
Budget » Fuel cost: regeneration
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Objectives H.

DOE Hydrogen Program

* Investigate chemicals that promise to meet DOE goals
— Storage density — RELEASE (pathways/thermodynamics)
— H, release rate — RELEASE (kinetics)
— Fuel cost -~ REGENERATION

* Principal focus on solid ammonia borane (AB)
— 19.6 wt%, 0.16 kg/L H, on a material basis
— 13.1% quantitatively demonstrated and working to higher levels

« Coordinate efforts Center-wide on engineering



Team & Collaborations _H,
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PNNL Team: T. Autrey, D. Camaioni, S. Rassat, J. Linehan, W. Shaw, D.
Dubois, D. Rector, D. Heldebrant, A. Karkamkar, K. Rappe, R. Zheng, D.
Caldwell, J. Li, L. Li, X. Li
Center Collaborations:

— Ammonia Boranes: LANL, Penn, UW, Alabama

— Engineering: Rohm & Haas, Millennium Cell, LANL

— Fuel Stability: Rohm & Haas

— Fuel Regeneration: LANL, Rohm & Haas, Penn, UC Davis, Alabama

— Catalysis: LANL, Penn, UW

— Computational Chemistry: Alabama

IPHE Collaborators: Oxford University, Industrial Research Limited, National
University of Singapore, University of Birmingham, Rutherford Appleton Labs, LANL

Additional international collaboration through IEA Task 22

Environmental Molecular Sciences Laboratory

— Computational Chemistry Grand Challenge in Hydrogen Storage
— High Field NMR Facility

Collaboration is critical to meeting Center objectives 4



Approach H,
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Release
— Maximize H, from fuel to obtain high capacity
— Maintain balance with spent fuel — need a composition that is regenerable
— Different approaches to control release and obtain high rates
* Thermally driven release
« Additives
» Scaffolds

— Understand the impact of working with exothermic release — safety

 Regeneration
— Minimize energy and cost
— Determine best route for digestion of solid spent fuels
— Determine how to economically reduce boron centers

« State-of-the-art scientific instrumentation and computational chemistry tools
— High Field NMR Facility

TGA/DSC - thermochemistry

—  Spectroscopic tools: Raman, IR, XAFS, others

—  High resolution X-ray diffraction

— Molecular Science Computing Facility (MSCF)

« Consider the system: use engineering tools to help direct research activities and
identify pitfalls

— Component & process models
— Semi-continuous & continuous bench-scale investigations

Data being collected for Center

down-selection process at the end of FY07 o



Approach: Solid AB

ENERGY EFFICIENCY
& FUEL COST

PROCESS CHEMISTRY
FOR REGENERATION

RELEASE
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~  FUEL
STABILITY THERMAL
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Progress i
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 Release
— Now understand the mechanism for the onset of release
« Series of experiments with high field "B NMR
» Confirmed nucleation and growth mechanism
« Diammoniate intermediate is key to release
* Mechanism valid up to ~ 120°C

— ldentified additives that accelerate release

— Shown that AB is stable at 50/60°C and that impurities have a large
impact on release

— Explored higher loading in silica MCM-41 scaffolds

* Regeneration
— Demonstrated complete digestion of solid spent fuel
— Theory used to identify better digestion approaches
— Theory used to build case for reduction approaches

* Engineering Assessment

— Used bench scale kinetics to understand impact of 2010 rate
requirement on reactor dimensions

— Preliminary consideration of fuel morphology indicates capacity targets
likely within reach



800 MHz "B NMR: Solid AB - H,
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Neat AB: In situ @ 88°C
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» Peaks sharpen at 20 min. indicating mobile phase
« Feature at -(10-15) ppm is key to understanding mechanism

PNNL: W. Shaw, T. Autrey, J. Linehan

8
Impact: NMR teaches rate enhancement approaches



Transition from Nucleation to Growth

|

dimer?

trimer?

H,
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(NH,),BH,
BH,

(DADB)

-10.0 -15.0 -20.0 -25.0 -30.0 -35.0 -9.0 -10.0 -11.0 -12.0 -13.0
| Ppm (1) ppm (1)

-14.0 -15.0

« Multiple triplets indicates series of -BH.- in slightly different

chemical environments: oligomers nucleated by DADB
« DADB is the reaction initiator

PNNL: W. Shaw, T. Autrey, J. Linehan

Key result: DADB is key to increasing rate
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H, Released, Equivalents

(1 Eq. = 6.4wt%)
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PNNL: D. Heldebrant, T. Autrey

Additives Increase Release Rate

Key result: additives to AB formulation accelerate release

H,
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DADB

 Additives reduce the
induction period

« Neat DADB — fastest
kinetics

« BH, & NH," improve
kinetics

* NH,Cl is slightly better
than DADB at 5% loading

« Acidic character appears
to be important for the
additive — consistent with
mechanistic work




Stability & Exothermic Release Hg
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DOE target for 2015: fuel Avrami Kinetics

needs to be stable at 60°C X =1 — exp[-(kt)"

Solid ammonia borane shows 1 —

an induction period before 0.9

release . 08

Isothermal DSC data [Wolf et = 07

al., Thermochimica Acta 343, & 09 o S

(2000) 19] can be used to Ll I

extrapolate release trends to .§ 04 T period

lower temperatures Sl R DN

Adiabatic assumed as a worst 01 AN

case o Lo b/ NN IS T

— Fuel predicted to be stable for 0.1 1 10 100 1000 10000
~ 100 hrs. at 60°C Time (hr)

— Greater stability at lower T
PNNL: S. Rassat, T. Autrey

2006: conservative model predicted stability issues for storage at 50-60°C



60°C, Two AB Sources
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Measured Stability at 60°C Hé
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Solid ammonia borane
— Source A unstable
— Source B stable

Source B had a
significantly higher purity
than source A

If source A is dissolved
and recrystallized, it
becomes significantly
more stable

Adiabatic hold
experiments indicate that
the modeling approach
was conservative within
the range of formulations
examined

Key Finding: fuel purity is critical for stability at 60°C 12



Scaffolds: Higher AB Loading - H;

L STiallAGE- DOE Hydrogen Program
CENTER OF EXCELLENCE ——4:1 AB:MCM-41
_ ——3:1 AB:MCM-41
‘mobile’ AB ———2:1 AB:MCM-41 Heat Elow
~ ——1:1 AB:MCM-41 9

1:2 AB:MCM-41 —— 1:1 ABIMCM-41

?1(|)30NMI\/IHRZ’ 1.6 - H, release ——2:1 AB:MCM-41

oM bulk AB 19 \ ——3:1 AB:MCM-41

—pure AB
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O |
-04 Pl
08 di-H-bond disruption
0 20 0 20 40 60  -80 20 40 60 80 100 120 140 160 180 200
ppm Temperature (C)

« 1B NMR and DSC suggest di-H-bonds are disrupted at lower temperature

* 1:1 AB to scaffold releases hydrogen at 50°C

* Higher AB loading may offer best trade off between tuned
thermodynamics and fuel stability

DSC (mW/mg)

PNNL: A. Karkamkar, W. Shaw, T. Autrey

Key result: scaffolds allow tuning of thermodynamics and kinetics



Regeneration of Ammonia Borane H
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« RECLAIMATION
« Spent fuel is off-boarded at fueling station

« Transported to large-scale regeneration facility
| |

« DIGESTION (& DISPROPORTIONATION)
« First step is to dissolve the fuel

* Fuel has to be digested to allow chemical manipulation
| |

« REDUCTION & DISPROPORTIONATION
* Reduction is required to get H, back into the spent fuel
« Disproportionation allows recovery of ammonia borane

—

REGENERATED FUEL VIA MULTI-STEP PATHWAY 14




Digestion with Disproportionation Hé
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(RO),BH * Digestion: f-BuOH digests
Polyborazylene compounds analogous to
+ BuOH spent AB fuel
Digestion in * Disproportionation: B(Ot-
capped vial Bu), and AB are formed over
temperature time from initial product
300 MHz 7'B  There is competition between
NMR time study | - AB and H, formation
e « MeOH favors H,
po ’ - « t-BuOH favors AB

1/3 (BHNH); + 2 ROH — (RO),BH + NH; (wanted)
(RO),BH + 1/;NH; — ?/,(RO)4B + /;BH;NH; (wanted)
ROH + (RO),BH — (RO);B + H, (unwanted)

PNNL: D. Heldebrant, J. Linehan, D. Camaioni

Impact: B-H recovered through one pot digestion and disproportionation




Digestion: Effect of Ammonia 2
Addition and Alcohol Substitution oo

3 equiv. t-BuOH 3 equiv. t-BuOH 3 equiv. MeOH
36 h. 211 psi NH3, 12 h. 211 psi NH3, 12 h.
B(Ot-Bu), B(Ot-Bu), B(OMe),
. |
H;NBH, H;NBH,

* 6-fold increase in B-H recovery with NH; overpressure
* MeOH gives little NH;BH,; — B-H loss dominates
e B(Ot-Bu), co-product — B-OR bonds may be difficult to reduce

PNNL: D. Heldebrant, J. Linehan, D. Camaioni

Impact: ammonia speeds digestion & increases yield of NH;BH; 6-fold




Theory: A Guide to the Best
Digestion Strategy

H,
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111
Rxn 1: (RO);B + H — (RO),BH"

Alkyl B-O (A) O-B-O B-O-C -AH,
Glyceryl, I 1.43, 1.39 | 113°, 122° | 82°, 93° 115
Cyclohexa-1,3,5-triyl, I 1.39 118° 101° 100
Methanetrimethyl, Il 1.39 118° 100° 96
Triphenyl, IV 1.37 120° 126° 87
Trimethyl 1.37 120° 121° 51

PNNL: D. Camaioni, J. Li

Impact: strained B-O bonds are 36-64 kcal easier to reduce than B(OMe),




Neat AB, Gas Burette Tests
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PNNL: S. Rassat, D. Heldebrant, T. Autrey

Engineering Assessment
. Toward Meeting the DOE Rate Targets
= Bench Scale Kinetics — Reactor Size

Data vs. DSC-Based Model

H,
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2 100

1 10

E DSC Isotherm Model 1st H, Equiv. .
:\ ~ \100 C AB Mass  Rate 1
110 C rJ20°C
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Impact: DOE rate target can be achieved with modest sized reactor



2 Equiv. H, from AB (13.1 wt%)

Engineering Assessment
Impact of Solid Fuel on Capacity
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PNNL: S. Rassat, T. Autrey, A. Karkamkar |
Volumetric capacity target looks possible with an engineered morphology

H,
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Loosely packed AB powder
cannot make the 2010
system target

2010 system target may be
attainable with pellets

— How is release impacted by
pellet size?

— What packing density is
realistic?

2015 system target is not
attainable with a pellet-based
approach

Game changers:

— Ultra-low voidage approach
— More H, from AB




Higher Temperature HE

Preliminary Data
Neat Solid AB
New gas burette apparatus 18 H, Release Kinetics
allows release at higher 6 [
temperature < 155 °C
Working to higher £ ,0
temperature to further L
Increase rate and capacity & g [ 120 °C
Q

Wit% > 16% H, e 6 100 °C
Max rate > 3 gH./s/kg AB T 4
Virtually no induction period 2
observed at higher 0 !
temperatures 0O 10 20 30 40 50 60

Time (min)

D. Heldebrant, S. Rassat, T. Autrey 20

Key result: higher temperature could be the key to capacity & rate



Future Work: Release H
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Continue to drive up Capacity
— Higher temperature — > 2 equivalents (mechanism still poorly understood)
— Volumetric: fuel morphology & low voidage formulations
Continue to drive up Rate
— Higher temperature — faster kinetics
— Additives — enhance release and maintain stability
— Need to understand kinetics of H, release after 1st equivalent
Quantitative measurement of H,, purity

Scaffolds: different surface chemistry to tune thermodynamics,
kinetics while maintaining fuel stability

Reactor and process concepts for solids: keep working toward
evaluation based on systems rather than materials

— Apparatus being assembled for continuous processing

— Examine impact of engineered solids on release

— Component and process model development

21



Regeneration: Future Work H
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« Drive to better efficiency
« Develop strategies that destabilize the bonds formed during
digestion and offer good access to the B center for reduction
— Theory indicates destabilization using polyols & phenols
— Need to look at -SH in addition to -OH digestions

* Incorporate reduction pathways

— Rohm & Haas efficiency analysis has shown that Zn may be an
economical metal route to sodium borohydride

* PNNL synthesizing ZnH, in support of experimental program
* PNNL will examine ZnH, for reduction of spent ammonia borane

— Theory driving renewed interest in transfer hydrogenations

— New pathway proposed by Dan Dubois at PNNL
« Activates H, for reduction reactions
» Theory suggests reduction of borate esters feasible
» Use on B-O bonds directly or for regeneration of other hydrides

* Engineering analysis
— Conceptual design & preliminary flow sheeting
— Efficiency & cost analyses 22



Future Regeneration Hz
Catalytic Activation of H, for Reduction e uscenroms

Dubois et al. Organometallics (2006)
L4M+ + H2 + t-BLIO- — L4M'H + t'BUOH

B(OR),  H-B(OR);

Theory: AG = -14 kcal/mol L MH LM
(PhO),B + H-BEt,” — (PhO),B-H" + BEt, 4 p
: ROH
« Cannot reduce with H, alone H,
« Couple catalysis to acid-base _
chemistry to drive reaction RO
 Working on one pot reaction L,MH,"

Goal: H, + Base + (RO),B <3 (RO),BH" + Base<H*

PNNL: D. Dubois, J. Linehan, D. Camaioni, D. Heldebrant

Impact: route demonstrated by Dubois et al. should reduce B(OPh),



Summary: Release H.

DOE Hydrogen Program

Neat AB appears to be the front runner at present

— Mechanism of release is pretty clear for 15t Equivalent

— Temperature can be used to control rate

— Demonstrated release of up to 16+ wt% (preliminary) for material

— Need more kinetics studies on 2"+ equivalents

— Fuels can be formulated for long term stability at 60°C (2015 target)

« Additives have been identified that greatly accelerate the rate of
release

— Need to determine if there are additives that allow increased rate at
release temperature, but stable fuel at 60°C

— Scaffolds are still of great interest, but additional work needs to be
done to be sure stable fuels are possible

« Simple engineered forms have potential to meet the 2010
gravimetric and volumetric targets for a system

« Based on the 2010 maximum rate target, reactor sizes look to be
reasonable

24



Summary: Regeneration H,
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« Shown how theory is guiding digestion and
reduction work at PNNL
— Need to destabilize borate ester co-products and look at —SH
— Two ideas on reduction pathways to be examined over the
next year
« Digestion & disproportionation with B-H recovery
has been demonstrated

« Ammonia overpressure dramatically impacts B-H
recovery

* Engineering analysis will start now that regeneration
routes are emerging

25



Summary Table H
(SOIId Ammonla Borane) DOE Hydrogen Program

Temp (<C) Weight % H, Vol. Cap. (kg/L) | Max. Rate '.‘iﬁft;?
2006 2007 (loose powder) | (gH,/s/kg) fO:a2t210
(1:1 S6c(;ffold) 52 32
86.5 5.5 5.5
120 6.5 7 0.021 1 2
140 -=- >13 0.039 1.8 1
155 --- >16 0.048 >3 0.8

All numbers provided above are MATERIAL values

DOE targets are based on system:
2010 Gravimetric Capacity of 6%
2010 Volumetric Capacity of 0.045 kg/L 26
2010 Rate of 0.02 gH,/s/kW
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