

PNNL Research as Part of the DOE Chemical Hydrogen COE

Chris Aardahl

Pacific Northwest National Laboratory

Operated by Battelle for the U.S. Department of Energy

DOE Hydrogen Program Annual Merit Review May 2007

Project ST-28

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: 3-15-05
- Project End: 9-30-09
- Complete: ~40%

Budget

- FY06: \$1200K
- FY07: \$1700K

Barriers Addressed

- System weight & volume for 2010
- H_2 release rate
- Thermal management
- Fuel cost: regeneration

Partners

Objectives

- Investigate chemicals that promise to meet DOE goals
 - Storage density \rightarrow RELEASE (pathways/thermodynamics)
 - H_2 release rate \rightarrow RELEASE (kinetics)
 - Fuel cost \rightarrow REGENERATION
- Principal focus on solid ammonia borane (AB)
 - 19.6 wt%, 0.16 kg/L $\rm H_2$ on a material basis
 - 13.1% quantitatively demonstrated and working to higher levels
- Coordinate efforts Center-wide on engineering

Team & Collaborations

- PNNL Team: T. Autrey, D. Camaioni, S. Rassat, J. Linehan, W. Shaw, D. Dubois, D. Rector, D. Heldebrant, A. Karkamkar, K. Rappe, R. Zheng, D. Caldwell, J. Li, L. Li, X. Li
- Center Collaborations:
 - Ammonia Boranes: LANL, Penn, UW, Alabama
 - Engineering: Rohm & Haas, Millennium Cell, LANL
 - Fuel Stability: Rohm & Haas
 - Fuel Regeneration: LANL, Rohm & Haas, Penn, UC Davis, Alabama
 - Catalysis: LANL, Penn, UW
 - Computational Chemistry: Alabama
- IPHE Collaborators: Oxford University, Industrial Research Limited, National University of Singapore, University of Birmingham, Rutherford Appleton Labs, LANL
- Additional international collaboration through IEA Task 22
- Environmental Molecular Sciences Laboratory
 - Computational Chemistry Grand Challenge in Hydrogen Storage
 - High Field NMR Facility

Approach

• Release

- Maximize H₂ from fuel to obtain high capacity
- Maintain balance with spent fuel \rightarrow need a composition that is regenerable
- Different approaches to control release and obtain high rates
 - Thermally driven release
 - Additives
 - Scaffolds
- Understand the impact of working with exothermic release \rightarrow safety
- Regeneration
 - Minimize energy and cost
 - Determine best route for digestion of solid spent fuels
 - Determine how to economically reduce boron centers
- State-of-the-art scientific instrumentation and computational chemistry tools
 - High Field NMR Facility
 - TGA/DSC thermochemistry
 - Spectroscopic tools: Raman, IR, XAFS, others
 - High resolution X-ray diffraction
 - Molecular Science Computing Facility (MSCF)
- Consider the system: use engineering tools to help direct research activities and identify pitfalls
 - Component & process models
 - Semi-continuous & continuous bench-scale investigations

Data being collected for Center down-selection process at the end of FY07

- Release
 - Now understand the mechanism for the onset of release
 - Series of experiments with high field ¹¹B NMR
 - Confirmed nucleation and growth mechanism
 - Diammoniate intermediate is key to release
 - Mechanism valid up to ~ 120°C
 - Identified additives that accelerate release
 - Shown that AB is stable at 50/60°C and that impurities have a large impact on release
 - Explored higher loading in silica MCM-41 scaffolds
- Regeneration
 - Demonstrated complete digestion of solid spent fuel
 - Theory used to identify better digestion approaches
 - Theory used to build case for reduction approaches
- Engineering Assessment
 - Used bench scale kinetics to understand impact of 2010 rate requirement on reactor dimensions
 - Preliminary consideration of fuel morphology indicates capacity targets likely within reach

800 MHz ¹¹B NMR: Solid AB

- Peaks sharpen at 20 min. indicating mobile phase
- Feature at -(10-15) ppm is key to understanding mechanism

PNNL: W. Shaw, T. Autrey, J. Linehan

Impact: NMR teaches rate enhancement approaches

Transition from Nucleation to Growth

- Multiple triplets indicates series of -BH₂- in slightly different chemical environments: oligomers nucleated by DADB
- DADB is the reaction initiator

PNNL: W. Shaw, T. Autrey, J. Linehan

Key result: DADB is key to increasing rate

Additives Increase Release Rate

DADB

- Additives reduce the induction period
- Neat DADB → fastest kinetics
- BH₄⁻ & NH₄⁺ improve kinetics
- NH₄CI is slightly better
 than DADB at 5% loading
- Acidic character appears to be important for the additive \rightarrow consistent with mechanistic work

Key result: additives to AB formulation accelerate release

- CENTER OF EXCELLENCE
 - Stability & Exothermic Release
 - DOE target for 2015: fuel needs to be stable at 60°C
- Solid ammonia borane shows an induction period before release
- Isothermal DSC data [Wolf et al., Thermochimica Acta 343, (2000) 19] can be used to extrapolate release trends to lower temperatures
- Adiabatic assumed as a worst case
 - Fuel predicted to be stable for ~ 100 hrs. at 60°C
 - Greater stability at lower T

Avrami Kinetics

ROHM

HAAS

Measured Stability at 60°C

60°C, Two AB Sources

Solid ammonia borane

- Source A unstable
- Source B stable
- Source B had a significantly higher purity than source A
- If source A is dissolved and recrystallized, it becomes significantly more stable
- Adiabatic hold experiments indicate that the modeling approach was conservative within the range of formulations Rohm & Haas: A. Chin, J. Magee, G. VanSciver examined

Key Finding: fuel purity is critical for stability at 60°C

PNNL: S. Rassat

- ¹¹B NMR and DSC suggest di-H-bonds are disrupted at lower temperature
- 1:1 AB to scaffold releases hydrogen at 50°C
- Higher AB loading may offer best trade off between tuned thermodynamics and fuel stability

PNNL: A. Karkamkar, W. Shaw, T. Autrey

Key result: scaffolds allow tuning of thermodynamics and kinetics

10

- RECLAIMATION
- Spent fuel is off-boarded at fueling station
- Transported to large-scale regeneration facility

- DIGESTION (& DISPROPORTIONATION)
- First step is to dissolve the fuel
- Fuel has to be digested to allow chemical manipulation

- REDUCTION & DISPROPORTIONATION
- Reduction is required to get H₂ back into the spent fuel
- Disproportionation allows recovery of ammonia borane

REGENERATED FUEL VIA MULTI-STEP PATHWAY ¹⁴

Digestion with Disproportionation

Polyborazylene + t-BuOH Digestion in capped vial at room temperature 300 MHz ¹¹B NMR time study

- **Digestion:** *t*-BuOH digests compounds analogous to spent AB fuel
- **Disproportionation**: B(Ot-Bu)₃ and AB are formed over time from initial product
- There is competition between AB and H₂ formation
 - MeOH favors H₂
 - *t*-BuOH favors AB

 $\begin{array}{l} 1/3 \ (\mathsf{BHNH})_3 + 2 \ R\mathsf{OH} \rightarrow (R\mathsf{O})_2 \mathsf{BH} + \mathsf{NH}_3 \ (\text{wanted}) \\ (R\mathsf{O})_2 \mathsf{BH} + \frac{1}{_3} \mathsf{NH}_3 \rightarrow \frac{2}{_3} (R\mathsf{O})_3 \mathsf{B} + \frac{1}{_3} \mathsf{BH}_3 \mathsf{NH}_3 \ (\text{wanted}) \\ R\mathsf{OH} + (R\mathsf{O})_2 \mathsf{BH} \rightarrow (R\mathsf{O})_3 \mathsf{B} + \mathsf{H}_2 \ (\text{unwanted}) \end{array}$

PNNL: D. Heldebrant, J. Linehan, D. Camaioni

Impact: B-H recovered through one pot digestion and disproportionation

Digestion: Effect of Ammonia Addition and Alcohol Substitution

- 6-fold increase in B-H recovery with NH₃ overpressure
- MeOH gives little $NH_3BH_3 \rightarrow B-H$ loss dominates
- $B(Ot-Bu)_3$ co-product \rightarrow B-OR bonds may be difficult to reduce

PNNL: D. Heldebrant, J. Linehan, D. Camaioni

Impact: ammonia speeds digestion & increases yield of NH₃BH₃ 6-fold

Theory: A Guide to the Best Digestion Strategy

Rxn 1: $(RO)_3B + H^- \rightarrow (RO)_3BH^-$

Alkyl	B-O (Å)	O-B-O	B-O-C	-∆ <i>H</i> 1
Glyceryl, I	1.43, 1.39	113°, 122°	82°, 93°	115
Cyclohexa-1,3,5-triyl, II	1.39	118°	101°	100
Methanetrimethyl, III	1.39	118°	100°	96
Triphenyl, IV	1.37	120°	126°	87
Trimethyl	1.37	120°	121°	51

PNNL: D. Camaioni, J. Li

Impact: strained B-O bonds are 36-64 kcal easier to reduce than B(OMe)₃

Engineering Assessment Toward Meeting the DOE Rate Targets Bench Scale Kinetics → Reactor Size

Data vs DSC-Based Model

Neat AB, Gas Burette Tests

PNNL: S. Rassat, D. Heldebrant, T. Autrey

Impact: DOE rate target can be achieved with modest sized reactor

Engineering Assessment Impact of Solid Fuel on Capacity

2 Equiv. H₂ from AB (13.1 wt%)

- Loosely packed AB powder cannot make the 2010 system target
- 2010 system target may be attainable with pellets
 - How is release impacted by pellet size?
 - What packing density is realistic?
- 2015 system target is not attainable with a pellet-based approach
- Game changers:
 - Ultra-low voidage approach
 - More H_2 from AB

PNNL: S. Rassat, T. Autrey, A. Karkamkar

Volumetric capacity target looks possible with an engineered morphology

Higher Temperature Preliminary Data

- New gas burette apparatus allows release at higher temperature
- Working to higher temperature to further increase rate and capacity
- Wt% > 16% H₂
- Max rate > $3 \text{ gH}_2/\text{s/kg AB}$
- Virtually no induction period observed at higher temperatures

D. Heldebrant, S. Rassat, T. Autrey

Key result: higher temperature could be the key to capacity & rate

Future Work: Release

- Continue to drive up Capacity
 - Higher temperature \rightarrow > 2 equivalents (mechanism still poorly understood)
 - Volumetric: fuel morphology & low voidage formulations
- Continue to drive up Rate
 - Higher temperature \rightarrow faster kinetics
 - Additives enhance release and maintain stability
 - Need to understand kinetics of H_2 release after 1st equivalent
- Quantitative measurement of H_2 purity
- Scaffolds: different surface chemistry to tune thermodynamics, kinetics while maintaining fuel stability
- Reactor and process concepts for solids: keep working toward evaluation based on systems rather than materials
 - Apparatus being assembled for continuous processing
 - Examine impact of engineered solids on release
 - Component and process model development

- Drive to better efficiency
- Develop strategies that destabilize the bonds formed during digestion and offer good access to the B center for reduction
 - Theory indicates destabilization using polyols & phenols
 - Need to look at -SH in addition to -OH digestions
- Incorporate reduction pathways
 - Rohm & Haas efficiency analysis has shown that Zn may be an economical metal route to sodium borohydride
 - PNNL synthesizing ZnH₂ in support of experimental program
 - PNNL will examine ZnH_2 for reduction of spent ammonia borane
 - Theory driving renewed interest in transfer hydrogenations
 - New pathway proposed by Dan Dubois at PNNL
 - Activates H₂ for reduction reactions
 - Theory suggests reduction of borate esters feasible
 - Use on B-O bonds directly or for regeneration of other hydrides
- Engineering analysis
 - Conceptual design & preliminary flow sheeting
 - Efficiency & cost analyses

Goal: $H_2 + Base + (RO)_3 B \xrightarrow{Cat} (RO)_3 BH^- + Base H^+$

PNNL: D. Dubois, J. Linehan, D. Camaioni, D. Heldebrant

Impact: route demonstrated by Dubois et al. should reduce $B(OPh)_3^{23}$

- Neat AB appears to be the front runner at present
 - Mechanism of release is pretty clear for 1st Equivalent
 - Temperature can be used to control rate
 - Demonstrated release of up to 16+ wt% (preliminary) for material
 - Need more kinetics studies on 2nd+ equivalents
 - Fuels can be formulated for long term stability at 60°C (2015 target)
- Additives have been identified that greatly accelerate the rate of release
 - Need to determine if there are additives that allow increased rate at release temperature, but stable fuel at 60°C
 - Scaffolds are still of great interest, but additional work needs to be done to be sure stable fuels are possible
- Simple engineered forms have potential to meet the 2010 gravimetric and volumetric targets for a system
- Based on the 2010 maximum rate target, reactor sizes look to be reasonable

- Shown how theory is guiding digestion and reduction work at PNNL
 - Need to destabilize borate ester co-products and look at –SH
 - Two ideas on reduction pathways to be examined over the next year
- Digestion & disproportionation with B-H recovery has been demonstrated
- Ammonia overpressure dramatically impacts B-H recovery
- Engineering analysis will start now that regeneration routes are emerging

Summary Table (Solid Ammonia Borane)

Temp (°C)	Weight % H ₂		Vol. Cap. (kg/L)	Max. Rate	kg AB in Reactor
	2006	2007	(loose powder)	(gH ₂ /s/kg)	for 2010 rate
60 (1:1 Scaffold)	3.2	3.2			
86.5	5.5	5.5			
120	6.5	7	0.021	1	2
140		>13	0.039	1.8	1
155		>16	0.048	>3	0.8

All numbers provided above are $\underline{\mathsf{MATERIAL}}$ values

DOE targets are based on system:

2010 Gravimetric Capacity of 6%

2010 Volumetric Capacity of 0.045 kg/L

2010 Rate of 0.02 gH₂/s/kW