

# 2007 DOE Hydrogen Program Advanced Boron and Metal Loaded High Porosity Carbons

#### Mike Chung, Vince Crespi, Peter Eklund and Hank Foley

Pennsylvania State University

May, 2007

Project ID: ST # 8

This presentation does not contain any proprietary, confidential, or otherwise restricted information



# Timeline

- Project start: 2/1/05
- Project end: 1/31/10
- % complete: 40%

# Budget

- Total project funding
  - DOE share: \$1.2M
  - Contractor share: \$0.3M
- FY06 \$ 225,000
- FY07 \$ 333,000

## Partners

- Dispersed throughout HSCoE: NIST (neutron), NREL (TPD), Air Products (vol. ads.), UNC (NMR)
- M Dresselhaus (MIT)
- Carbolex, Inc

# **Overview**

## Barriers addressed

- <u>A:</u> System Wt & Vol: Hydrogen volumetric (1.5 kWh/L) and gravimetric (6wt%) storage density goals for 2010
- <u>B:</u> System Cost: High-volume low-cost synthesis routes (via pyrolysis, arc)
- <u>C:</u> Energy Efficiency: Low pressure, moderate temperature operation (via enhanced binding energy through chemical modification)
- <u>E:</u> Charge/discharge rate: via Mixed micro/mesopore structures through precursor design
- <u>J:</u> *Thermal management:* via designed moderate binding energies of mixed physi/chemi-sorption
- <u>P:</u> *Improved understanding:* via calculations in close coupling with fundamental measurements on well-characterized, well-ordered systems



## **Objectives/Approaches**

Achieving DOE 2010 H<sub>2</sub> storage goal (6 wt%) by developing advanced H<sub>2</sub> adsorption materials with high binding energy (10-30 kJ/mol) and high SSA (> 2000 m<sup>2</sup>/g)

#### FY06

- Developing methods to prepare porous B/C (B-substitution) materials.
- Characterizing new B/C materials and structure-property-H<sub>2</sub> adsorption relationship.

#### FY07

- Synthesizing the desirable B/C materials with B content (>10%) and SSA (>2000 m<sup>2</sup>/g).
- Investigating routes to prepare atomic metal dispersion (M-intercalation) in B/C materials.
- Studying structure-property relationship.
- Theoretical prediction of M/B/C materials.

#### **M/B/C** material



#### Substitutional B in C

- ✓ Lightness of Boron
- ✓ Enhancing  $H_2$  interaction
- ✓ No serious structural distortions
- ✓ Catalyzing carbonization
- ✓ Stabilizing atomic metal

# Theoretical Prediction of M/B/C Materials

#### B/C Material (H B C)

7 kJ/mol/H<sub>2</sub>

PENNSTATE



Boron substitutions of the carbon framework have shown the raise of binding energy to  $H_2$  into the range of theoretical prediction. M/B/C material (Sc B C)

20-30 kJ/mol/H<sub>2</sub>



4.3 eV gained by depositing Sc on B/C surface (ScB<sub>2</sub>)

We have predicted that boron doping stabilizes atomically dispersed metals (Sc, Mg, Ti, Pd, Be...) against aggregation, a necessary condition to expose orbitals for reversible hydrogen binding.

(Vince Crespi) 4



#### Three complementary approaches to prepare B-substituted carbon (B/C) materials

- Electric arc vaporization from M-B-C Electrodes (Eklund)
  - Non-equilibrium high-energy conditions
  - Accomplishment: Production of highly ordered uniform high SSA B-doped carbon nanotubes with boron doping up to 3%, which shows enhancement of H<sub>2</sub> binding energy by inelastic neutron scattering. Production of Al-B-nanocarbon particles (~20 nm dia) from Al-B-C electrodes.
- Molecular Reaction / Pyrolysis (Foley)
  - Combinations of precursors to control complex pyrolitic decomposition
  - Accomplishment: Synthesis of highly porous materials with a controlled mixture of micropores (for large storage) and mesopores (for rapid transport)
- B-Containing Precursores (Polymers) / Pyrolysis (Chung)
  - Ability to design precursors with high B contents and high SSA
  - Accomplishment: 8% boron incorporation into sp<sup>2</sup> carbon frameworks. Data show the increase of H<sub>2</sub> binding energy (~10 KJ/mol) and doubles H<sub>2</sub> absorption capacity.



# Synthesis of Nanoparticle Carbides by Electric arc vaporization



Hot-pressed Metal-Boron-Carbon electrodes (auto feed if necessary)





Al<sub>8</sub>B<sub>4</sub>C<sub>7</sub>, Al<sub>4</sub>C<sub>3</sub> particles (d~10-20 nm)

- Crystalline metal-boro-carbides produced.
- Research Reactor capacity ~100 g/hr (scalable).



#### AI-B-C Nanoparticles (20-100 nm diameter)



Crystalline AI-B-Carbides are produced by Electric arc vaporization





- It is known that Cl<sub>2</sub> will vapor transport not only the metal atoms, but also boron from bulk carbides
- We are exploring non-equilibrium conditions that lead to preferential metal removal leading to a porous boro-carbon with residual metal sites—the residual metal should also be active for H<sub>2</sub> chemisorption
- Encouraging experiments are in progress

PENNSTATE



#### Synthesis of B/C Materials by Molecular Reaction/Pyrolysis



9



#### Hydrogen storage measurements

| Measurement at NREL                                          | TEAB-1    | TEAB-2                          |
|--------------------------------------------------------------|-----------|---------------------------------|
| N2 BET SSA, as received                                      | 35 m²/g   | $\sim 950 \text{ m}^2/\text{g}$ |
| Sieverts RT H2 Uptake at ~2 bar, as received                 | <0.01 wt% | 0.025 wt%                       |
| Sieverts 77 K H2 Uptake at $\sim$ 2 bar, as received         | 0.2 wt%   | 1.5 wt%                         |
| Sieverts 77 K H2 Uptake at ~ 2 bar, after 200°C vacuum degas |           | 2.0 wt%                         |
| N2 BET SSA, after 200°C vacuum degas                         |           | 1071 m²/g                       |

TEAB-1 and TEAB-2 are the B/C materials before and after CO<sub>2</sub> activation at 900°C for 3 hs.



At room temperature, high pressure hydrogen uptake values (0.5 wt% at 100 bar) are similar to activated carbon that has twice the surface area of TEAB-2

(Hank Foley) <sup>10</sup>



# Synthesis of B/C Materials by Using B-containing Precursors



#### **Precursor Design**

- Aromatic (conjugated) framework
- Strong B-C Bond and Reactive B-CI bonds for intermolecular and intra-cyclization reactions

Economic process for producing large scale material, with the control of B content, crystal structure, morphology (SSA, pore size and distribution)

(Mike Chung)

(at 600 °C)

6.5% B content

780 m<sup>2</sup>/g



PENNSTATE



Peak 1 and peak 2&3 depend linearly on pressure as expected for free  $H_2$  gas Peak 4 shows nonlinear pressure dependence. Using the Langmuir equation, an estimate of binding energy  $E_{ads}$  =9.2 kJ/mol (> 3 times higher than C).

#### **Boron significantly enhances H**<sub>2</sub> **binding energy**

Yue Wu (UNC) and Mike Chung

12



#### Pore Size Distribution in B/C Material (III) (B content = 5.7%; Surface area= 528 m<sup>2</sup>/g)



About 1/3 of the incorporated B atoms are available for interaction

(Mike Chung)

13



#### Hydrogen Uptake in B/C Material (III) (NREL)

| Measurement                                                       | PBDA<br>(BC-800)   | PBDA<br>(BC-1500)  |
|-------------------------------------------------------------------|--------------------|--------------------|
| N <sub>2</sub> BET SSA, as received                               | 528 m²/g           | 33 m²/g            |
| Sieverts RT H <sub>2</sub> Uptake at ~2 bar, as received          | 0.02 wt%           | 0.004 wt%          |
| Sieverts 77 K H <sub>2</sub> Uptake at ~ 2 bar, as received       | 1.4 wt%            | 0.07 wt%           |
| TPD from 77 K to 800°C                                            | Physisorption only | Physisorption only |
| BET after 800°C degas                                             | 619 m²/g           |                    |
| Sieverts 77 K H <sub>2</sub> Uptake at ~ 2 bar, After 800°C degas | 1.6 wt%            |                    |





Ahn et al, Chem. Mat. 18, 6085, 2006

(Mike Chung) <sup>14</sup>

# B/C material (vs. C with a similar SSA) shows >50% increase in $H_2$ uptake at 2 bar



#### Hydrogen Uptake in new B/C Material (IV) (B content = 6.5%; Surface area= 780 m<sup>2</sup>/g)



- The corresponding C material with a similar surface area only adsorbs < 2% H<sub>2</sub> at 77K and 30 bar.
- Reversible Adsorption-Desorption cycles by pressure

#### B/C material (vs. C with a similar SSA) doubles H<sub>2</sub> adsorption at 77K



## Summary: Penn State Effort

- Relevance: Increase reversible hydrogen BE by developing new storage materials through chemical modification of carbon frameworks.
- **Approach:** Three complementary synthesis techniques closely coupled to adsorbtion measurements and first-principles materials theory.
- Technical accomplishments:
  - All three synthesis routes produce boron-substituted sp<sup>2</sup> carbon (B/C) materials.
  - B/C materials have been prepared with up to 8% substitutional B elements and SSA ~1000 m<sup>2</sup>/g.
  - B/C material increases H<sub>2</sub> binding energy (~10 kJ/mol) and doubles absorption capacity.
  - Calculations show that higher boron content in higher-curvature geometries have higher binding energy (~30 kJ/mol) and boron stabilizes atomically dispersed metals on the carbon framework.
- Collaborations: NREL, NIST, UNC, AirProducts, Carbolex



### Future Work

#### Plan for the rest of FY07

- Continuing the development of new B/C materials with more reactive ٠ B species, B content (>10%) and surface area (>2000 m<sup>2</sup>/g), which further increase storage capacity at high temperatures.
- Studying the correlation between B species (structure, morphology) • and  $H_2$  Binding Energy.
- Investigating synthesis protocols for metal dispersion onto B/C materials • to further increase binding energy and raise the operating temperature.

#### Plan for FY08

- Pushing B content to >20% and surface area  $> 2000 \text{ m}^2/\text{g}$  in various • forms of B/C materials to further increase binding energy and determine (T,P) needed for 6 wt% reversible H<sub>2</sub> storage.
- Developing the desirable Metal-Boro-Carbon materials (specific metal, • composition, and morphology) and investigate bi-functional (B & metal) H-storage. 17





| Comparison of Hydrogen Storage in Various Material Systems |                                      |                           |                    |                       |  |
|------------------------------------------------------------|--------------------------------------|---------------------------|--------------------|-----------------------|--|
| Material                                                   | <b>Binding</b><br>Energy<br>(KJ/mol) | H <sub>2</sub> Adsorption |                    |                       |  |
|                                                            |                                      | <b>Wt</b><br>(%)          | Temperature<br>(K) | <b>Pressure</b> (atm) |  |
| C material<br>(1000 m²/g SSA)                              | ~ 3                                  | 0.3<br>2                  | 300<br>77          | 50<br>30              |  |
| B/C material (IV)<br>(6.5% B content;<br>780 m²/g SSA)     | > 10                                 | 0.5<br>3.2                | 300<br>77          | 50<br>30              |  |
| M-B-C Material<br>(calculation)                            | 30-80                                | > 5                       | 300                | 1-10                  |  |

Our intent is to optimize the material to meet the 2010 goals with higher boron concentrations, greater surface areas, and metal dispersion for bi-functional (physical/chemical) adsorption & storage.