Solutions for Chemical Hydrogen Storage: Hydrogenation/ Dehydrogenation of B-N Bonds

Pls: Karen Goldberg and Mike Heinekey Co-workers: Nathan Bennette, Brandon Dietrich, Travis Hebden, Denise Méry

Project ID # STP10

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: FY 05
- End: FY 09
- 40% Complete

Budget

- Total project funding
 - \$1.1 M DOE share
 - \$0.28 M cost share
- Funding received in FY06
 - \$200K
- Funding for FY07
 - \$200K

Barriers

- System Weight and Volume
- H₂ Charging/Discharging Rate
- System Cost
- Regeneration Processes

Partners

- Pacific Northwest National Laboratory (PNNL)
- Los Alamos National Laboratory (LANL)
- University of Alabama
- University of Arizona

Objectives

- Identify materials/systems to meet DOE target goals for gravimetric and volumetric density of H₂
 - Amineboranes and other BN compounds have potential for high H₂ storage capacities
- Develop catalysts to meet DOE target goals for H₂ charging/discharging rates from BN materials
 - Thermal H₂ release from BN materials is slow and inefficient. Effective catalysts for dehydrogenation/ rehydrogenation will be needed
- Optimize to obtain cost-effective catalysts
 - Scale of project requires inexpensive and widely available system components
- Optimize BN materials for potential in effective regeneration processes

- Efficient regeneration of spent BN materials is critical

Approach Theme

Develop cost effective and efficient catalysts for the dehydrogenation of BN compounds

Approach in Detail

- To develop cost effective catalysts for dehydrogenation of BN compounds
 - Understand how previously identified Iridium catalyst (2006 result) dehydrogenates Ammonia Borane (AB) and test its effectiveness for the dehydrogenation of other BN compounds (weight and volume, H₂ discharge rate)
 - Apply knowledge gained from Platinum Group Metal (PGM) catalysts to develop efficient non-PGM catalysts for dehydrogenation of BN compounds (*H*₂ discharge rate, system cost)
- To identify BN compounds with high potential for facile regeneration
 - Using efficient catalysts (see above), thermodynamics of dehydrogenation/rehydrogenation can be experimentally measured (regeneration processes)

Key Accomplishments for 2007

- 2006 Ir catalyst and modified PGM catalysts found to be effective for the dehydrogenation of several different BN materials
- Identified dormant form of 2006 Ir catalyst and conditions for regeneration of the catalyst
- Discovered several non-PGM catalysts for the dehydrogenation of BN materials
- UW catalysts are the fastest PGM and non-PGM catalysts for ammonia borane (AB) dehydrogenation
- Demonstrated a BN system that is within a factor of 10 of 2010 DOE target goals for system gravimetric and volumetric densities of H₂
- Developed a PGM catalyst for the dehydrogenation of a "solvent-free" liquid BN system
- Enthalpy of reaction for the dehydrogenation of AB was experimentally measured

Ir Catalyzed Dehydrogenation of Ammonia Borane (AB)

Insoluble Product

- Fastest reported transition metal catalyst
 - 200 fold increase in reaction rate compared to previous best catalyst
- Gives single, but insoluble product
 - Insolubility presents challenge for further dehydrogenation

Dehydrogenation occurs very rapidly, but insoluble product allows generation of only one equivalent of H₂ which limits weight %

Denney, M. C.; et al., J. Am. Chem. Soc., 2006, 128(37), 12048-12049

WASHINGTON 7

Characterization of Dormant Catalyst and Subsequent Regeneration

- Slowing rates upon continued addition of BN substrate indicate catalyst deactivation
- The dormant catalyst has been characterized by X-ray crystallography and ¹H NMR spectroscopy

The deactivated form of the catalyst is a single, well-characterized species

Regeneration of Active Catalyst

 Investigations of the reactivity of the dormant form of the catalyst — reaction with H₂ (30 psi) results in loss of BH₃ and regeneration of Ir hydride complexes

Active Ir catalyst can be regenerated under moderate H₂ pressure from dormant form

Ir Catalyzed Dehydrogenation of Other BN Systems

• Dehydrogenation of Methylamine Borane (MeAB)

 $n \operatorname{MeNH}_{2}\operatorname{BH}_{3} \xrightarrow{(\operatorname{POCOP})\operatorname{Ir}(\operatorname{H})_{2}}{\operatorname{THF, rt}} \operatorname{[MeNHBH}_{2}]_{n} + n \operatorname{H}_{2}$ Soluble Product

Dehydrogenation of a 1:1 mixture of AB and MeAB

 $NH_{3}BH_{3} + MeNH_{2}BH_{3} \xrightarrow{(POCOP)Ir(H)_{2}} [(NH_{2}BH_{2})(MeNHBH_{2})]_{n} + 2 H_{2}$ THF, rt Soluble Product

 Ir catalyzed dehydrogenation of substituted and mixed BN systems yields <u>soluble</u> products and thus provides potential for further dehydrogenation to release more than one equivalent of H₂

Versatility of Iridium Catalyst

Dehydrogenation of BN Compounds by Iridium

 Ir catalyst promotes release of H₂ from different BN systems at similar rates allowing for potential development of mixed BN materials for hydrogen storage applications

Approaching DOE Goals

- Reaction Conditions
 - High concentration mixture of NH₃BH₃ (AB) and MeNH₂BH₃ (MeAB) at RT (~800 mg of total amine borane)
 - 0.5 mol% Ir catalyst
- Results
 - Produces 0.500 L of H_2 (1 equiv.) in ~60 s
 - System (solvent, catalyst, etc...) generates 0.4 wt% H₂

	Concentrated AB/MeAB Mixture	DOE 2010 Target
Gravimetric Density (wt% H ₂)	0.4%	6.0%
Volumetric Density (kg H ₂ /L)	0.005	0.045

Unoptimized system is within a factor of 10 of several DOE goals

"Solvent-Free" Mixed AB:MeAB Dehydrogenation

- Center partners determined that 1:1 mixture of AB and MeAB forms a liquid at 60 °C
 - Absence of solvent increases the wt% of H₂ for the system
- Knowledge gained from Ir system was used by UW to identify a PGM catalyst* that can dehydrogenate the liquid AB/MeAB mixture
 - Preliminary results
 - 0.25 equivalents of H₂ released in ~10 minutes
 - Up to 1.25 equivalents of H₂ released in ~16 hours

 Dehydrogenation of AB/MeAB mixtures with no solvent can lead to systems with very high gravimetric density (potentially 11.0 wt%)

*Catalysts not identified because information is proprietary

Development of non-PGM Catalyst

- Benefits of non-PGM catalysts over PGM group catalysts: price and availability
 - (e.g. Co versus Ir)
 - Cobalt is much cheaper than Iridium
 - Ir market price ~ \$14,000 / kg
 - Co market price ~ \$32 / kg
 - Cobalt is more abundant than Iridium¹
 - Abundance of Ir in earth's crust 1 μ g / kg
 - Abundance of Co in earth's crust 2.5 mg / kg
- Knowledge from PGM catalysts allowed identification of several non-PGM catalysts that dehydrogenate BN compounds
- Information gained from studying PGM catalysts can be applied towards the development of inexpensive non-PGM catalysts

1) CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition)

Homogeneous* Ammonia Borane Dehydrogenation Catalyzed by Cobalt Complexes

1) Thermochim. Acta, 2000, 343, 19 2) J. Phys. Chem. A, 2005, 109, 5129-5135

ASHINGTON 1

Future Work

- Mechanistic study of dehydrogenation of BN systems with current catalysts
 - Optimization and further catalyst development will be assisted by understanding the catalyst mode of action
 - Better catalysts will lead to higher H₂ discharge rates
- Development of efficient non-PGM catalysts for the dehydrogenation of BN materials
 - Continue to use knowledge gained from PGM catalysts to design non-PGM catalysts
 - Non-PGM catalysts will lower system costs
- Increase amount of H₂ released from BN materials
 - Increase solubility of first BN dehydrogenation product to allow further dehydrogenation
 - Pursue tandem catalysts for first and second dehydrogenation reactions (in collaboration with LANL)
 - Further dehydrogenation needed to meet DOE weight and volume targets

Future Work

- Development of catalysts for liquid phase "solventfree" BN systems
 - New catalysts for solvent-free BN systems are being developed
 - Liquid BN materials can meet DOE weight and volume targets
- Identify/develop new BN materials* that have the potential for direct rehydrogenation of spent fuel
 - New systems have been proposed and computational studies are being carried out (in collaboration with PNNL and University of Alabama)
 - Thermodynamic (enthalpy) measurements using our fast PGM and non-PGM catalysts allow experimental assessment of the potential of different BN materials (in collaboration with PNNL)
 - Will impact regeneration processes

*Compounds not identified because information is proprietary

Collaborations with Center Partners

- Pacific Northwest National Lab (PNNL)
 - DSC calorimetry experiments (enthalpy measurements)
 - Computations on thermodynamics of dehydrogenation of new BN materials
- Los Alamos National Lab (LANL)
 - Regular exchange of catalyst and system information
 - (e.g. Liquid AB/MeAB mixture conditions)
 - Tandem catalysis experiments

University of Alabama

- Theoretical calculations of thermodynamics for AB dehydrogenation/rehydrogenation
- Theoretical calculations on new BN materials
- University of Arizona
 - Have provided UW with AB and MeAB materials

Project Summary

- Relevance
 - BN compounds have significant potential as hydrogen storage materials which can meet DOE goals
- Approach
 - Develop catalysts for dehydrogenation of BN systems
 - Investigate different BN materials and systems
 - Optimize systems to meet DOE weight and volume, H₂ discharge rate, and system cost targets
- Accomplishments
 - Developed the fastest PGM and non-PGM catalysts reported to date for the dehydrogenation of BN compounds at mild conditions
 - Determined thermodynamic data relevant to the potential regeneration of BN compounds by direct rehydrogenation
- Collaboration
 - Collaborations with groups at PNNL, LANL, University of Alabama, and University of Arizona
- Future Work
 - Acquire and utilize mechanistic information concerning the dehydrogenation of BN compounds with current catalyst systems to guide optimization of new systems
 - Develop catalysts for the dehydrogenation of liquid "solvent-free" BN systems
 - Investigate new BN materials which may have the potential for regeneration by direct rehydrogenation

Project Summary Table

Barrier	FY 2006 Results*	FY 2007 Results		
		High Concentration AB/MeAB Mixture	Solvent- Free System	DOE 2010 Target
Gravimetric Density (wt% H ₂)	0.001 %	0.4%	11.0%**	6.0%
Volumetric Density (kg H ₂ /L)	0.0009	0.005	Density of AB/MeAB Liquid (TBD)	0.045
Charging / Discharging Rate (System volume required to meet target rate for an 80 kW stack)	81 L	24 L***	TBD	Minimum Full Flow Rate of 0.02 (g/s)/kW = 0.80 mol H ₂ /sec for an 80 kW stack

* Based on dilute AB solution in THF with 1.0 mol% catalyst ** Theoretical potential with release of 2 equivalents of H₂

*** Conservative value based on the average rate over entire reaction time

