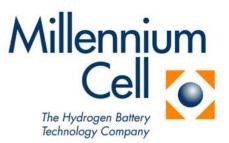


Process for the Regeneration of Sodium Borate to Sodium Borohydride

Oscar A. Moreno (P.I.), Michael T. Kelly, Jeffrey V. Ortega, Ying Wu Millennium Cell Inc., 1 Industrial Way West, Eatontown, NJ 07724

2007 DOE Hydrogen Program Annual Merit Review Washington, D.C., May 16, 2007

Project ID #: STP 15 Contract #: DE-FC36-04GO14008


This presentation does not contain any proprietary or confidential information

Overview

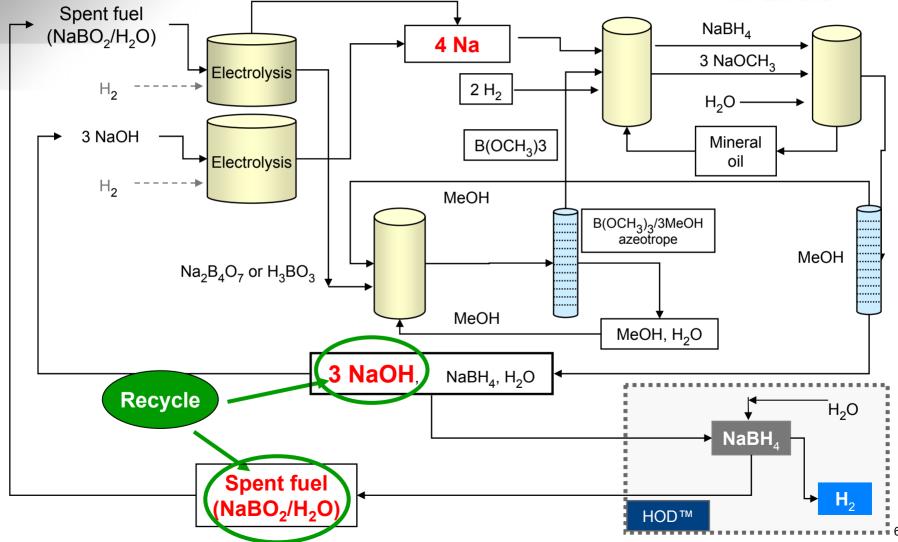
Timeline	Barriers	
Project start date:	A. Cost	
Fiscal Year 2004	C. Efficiency	
Project end date:	G. Life Cycle and Efficiency Analyses	
Fiscal Year 2006	 Q. Regeneration for Irreversible Systems R. By-Product Removal 	
Percent complete:		
90%	Other: Applicable to Off-Board Delivery and Storage	
Budget	Partners	
Total funding: \$4.5 MM, 3 yrs DOE share: \$3.6 MM MCEL share: \$0.6 MM APCI share: \$0.4 MM Funding received in FY06: \$0.566 MM Funding for FY07: \$0.120 MM	 Millennium Cell - Na/B Separation, Engineering, Membrane development. Princeton University - Direct borate electrolysis. 	

Barrier	Project Objectives	
A. Cost	Develop regeneration process for NaBH ₄ that significantly lowers its cost	
C . Efficiency	Improve overall energy efficiency; Demonstrate feasibility of achieving ~50% "well-to-tank" efficiency.	
G . Life Cycle and Efficiency Analyses	Conduct a high-level energy efficiency assessment based on the newly-developed re-generation process.	
Q. Regeneration Processes for Irreversible Systems	Develop energy efficient and cost effective process for off-board regeneration of NaBH ₄ .	
R . By-Product Removal	Develop a process that re-uses the by-product NaBC thereby completing the recycling loop.	

Status Against DOE Targets

- Objective:
 - Reduce SBH cost
- Status:
 - Current SBH: \$40-60 /kg purchased
 - Reported in May 2005: estimated ~\$7/kg production cost when NaOH electrolysis is implemented
- Further cost reduction:
 - Co-production of Na and Boric acid from recycled borate
 - One-pot reaction from borate to SBH.
- DOE Target:
 - $2-3/kg H_2$ is equivalent to 0.40-0.50/kg SBH.

Approach



Use Electrochemical process to achieve high energy efficiency

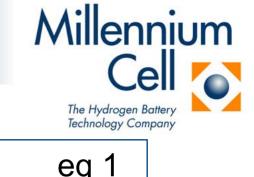
- Highly efficient pathway to key precursor for SBH.
- Direct electrolysis of spent fuel
- One-pot electrolysis for SBH synthesis
- Reduce number of steps in regeneration process
 - Eliminate costly and inefficient separation and purification steps
- Couple engineering development with bench scale testing
 - Safety and cost considerations
- Multi-discipline approach that includes chemistry, materials science, and engineering
 - Reaction kinetics studies
 - Materials compatibility and durability studies
 - Reactor and process designs

Approach - utilizing recycled material

Accomplishments

Reaction Chemistry

- Measured current density in NaOH and NaBO₂ electrolysis
- Demonstrated that precursors to NaBH₄ synthesis can be made from the direct electrolysis of spent fuel
- Showed the feasibility of synthesizing BH₄ in ionic liquids at room temperature (current commercial NaBH₄ process: 275°C)


Preliminary Engineering Assessment

- Completed preliminary engineering:
 - PFDs, P&IDs, Equipment List, Equipment Specs
- Materials performance testing for reactor:
- Process modeling using HYSYS: 40% complete
- Safety and hazard assessment: 40% complete

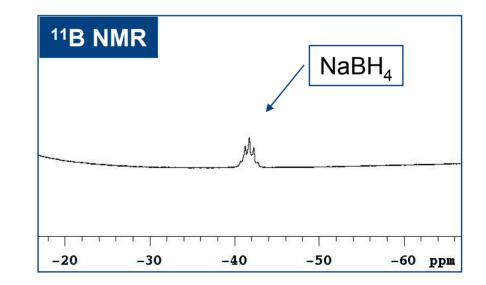
Preliminary Cost Assessment

- Established plant scale
- Gathered initial information on electrolyzer cost

"One-Pot" Borohydride Electrochemical Generation

LiBr	\rightarrow	Li + Br ₂	eq 1	
$Li + H_2$	\rightarrow	LiH	eq 2	
$LiH + B_2O_3$	\rightarrow	$LiBO_2 + LiBH_4$	eq 3	

- Reaction sequence takes place in one pot, with no need for separations
- Yield is currently low (<10%), most likely due to the low solubility of H₂ in the melt at reaction temperature (275 °C).
- Work at subcontractor (Princeton) focused on utilizing melts with higher H₂ solubility
- Status:
 - 1st Step: Demonstrated the hydride transfer chemistry with commercially available hydrides and borate
 - 2nd Step: Will Attempt electrochemical synthesis of hydride when the chemistry and analysis methods are in hand


"One-Pot" Borohydride Electrochemical Generation

One-pot SBH synthesis in ionic liquids

Ionic Liquids	M.P. (°C)
1-butyl-1-methyl-pyrrolidinium tris(pentafluoroethyl)trifluorophosphate	-50
Trihexyl-tetradecyl-phosphonium tris(pentafluoroethyl)trifluorophosphate	-50
1-butyl-2,3-dimethylimidaozolium chloride	89

- Step 1: successfully demonstrated the synthesis of NaBH₄ in the first two ionic liquids at room temperature, with hydride starting material.
- Remain to be shown: same reactions can take place with electrochemically generated hydride

"One-Pot" Borohydride Electrochemical Generation

2-Compartment E-Chem Cell

Experimental Focus:

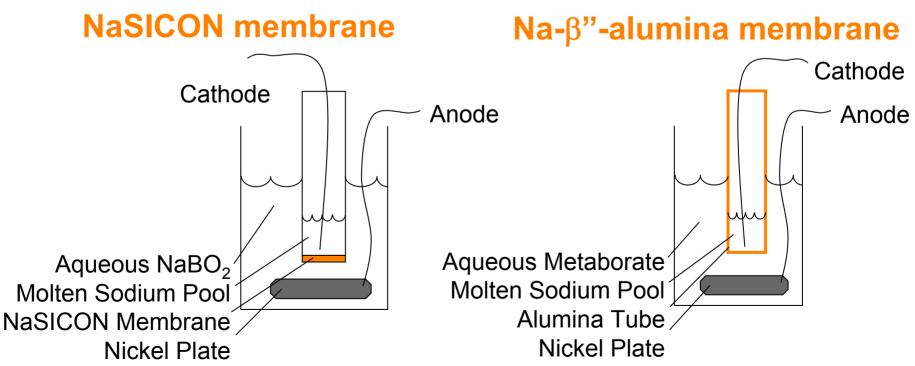
- electrochemical generation of hydride with subsequent formation of BH₄⁻ in the same cell.
- Trimethyl borate species has been shown to be electrochemically activated at Pt and Li electrodes

Results so far:

- In the absence of Li or Na as counter cations to the hydride, B-O species was converted into B-F species.
- Conversion of B-O to B-F occurs only with applied voltage indicating electroactivity.

Future experiments:

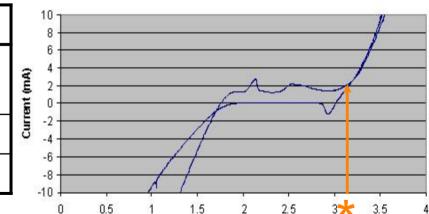
 will include addition of H₂ at cathode as well as Li or Na to make borohydride.


Sodium and Boron Separation

Method:

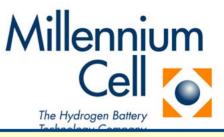
Direct recovery of Na metal and borate from NaBO₂ spent fuel, for use in SBH synthesis

Experimental Set-up


Sodium and Boron Separation - Effect of Applied Potential

Cathode Rxn: $4 \text{ Na}^+ + 4 \text{ e}^- \rightarrow 4 \text{ Na}$ Anode Rxn: $4 \text{ OH}^- \rightarrow \text{O}_2 + 2 \text{ H}_2\text{O} + 4 \text{ e}^-$ Anode Solution Rxn: $4 \text{ B}(\text{OH})_4^- \rightarrow 4 \text{ B}(\text{OH})_3 + 4 \text{ OH}^-$ Overall Rxn: $\text{NaB}(\text{OH})_4 \rightarrow \text{Na} + \text{B}(\text{OH})_3 + \frac{1}{4} \text{ O}_2 + \frac{1}{2} \text{ H}_2\text{O}$

- Onset potential = 3.2 V
- Higher potential required to achieve sufficient reaction rate


Example Experimental Results			
	Potential	Current	Yield
	(V)	(mA)	
Run A	3.5	4.8	85%
Run B	5.0	125	96%

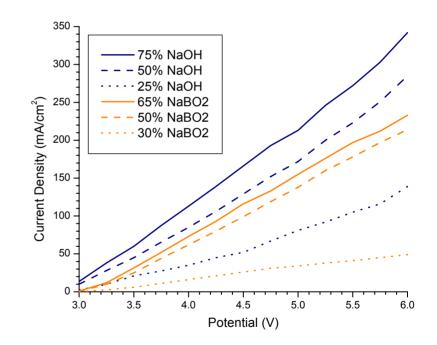
Potential (volts)

Cyclic Voltammogram of NaBO2-4H2O

Sodium and Borate Separation

Na Synthesis from Various Aqueous Solutions

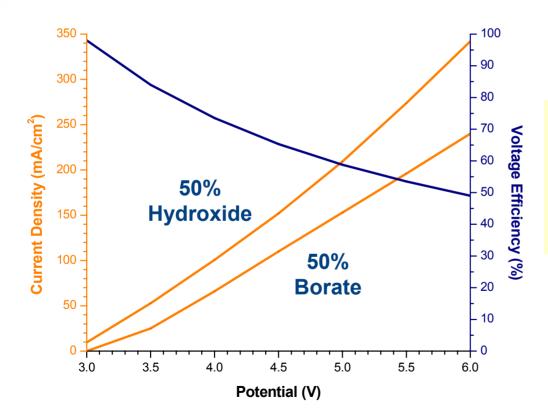
Aqueous Solution	Na- β" -alumina	NaSICON	
NaBO ₂ (concentrated)	100% Current Efficiency	No reaction	
NaBO ₂ (dilute)	Failed – 0% yield	60-70% yield	
NaOH (concentrated)	100% Current Efficiency	No reaction	
NaOH (dilute)	To be tested	Partial rxn, membrane damaged	
Borax (concentrated)	100% Current Efficiency	To be tested	
Borax (dilute)	To be tested	30-35% yield	
"Spent Fuel" from HOD®	100% Current Efficiency	Failed, membrane damaged	


Initial Experiments Appear to Indicate:

- Na-β"-Alumina is more effective with concentrated solutions while NaSICON is more effective with dilute solutions
- Further experimentation needed to obtain additional insight

Current Density Determination

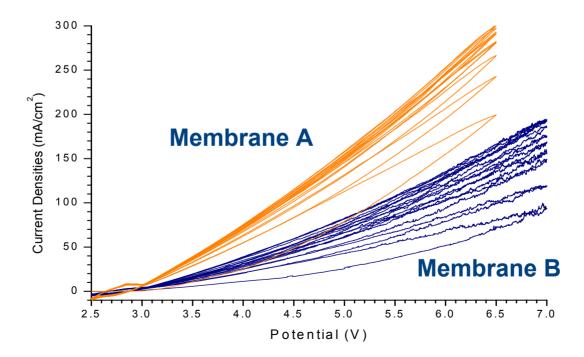
- Higher current densities were achieved in hydroxide solutions than in the corresponding borate solutions
- Membranes exhibited better stability in borate solutions
- Use of β"-alumina allowed 99+% current efficiencies in both the borate and the hydroxide melts tested.



Note: β "-Alumina membranes with Ni counter electrode

Optimized Current Density

Measured Current Density vs. Voltage Efficiency


Increasing applied potential increases current density but also decreases the voltage efficiency

Theoretical Minimum Potential = 2.94 V at 115 °C

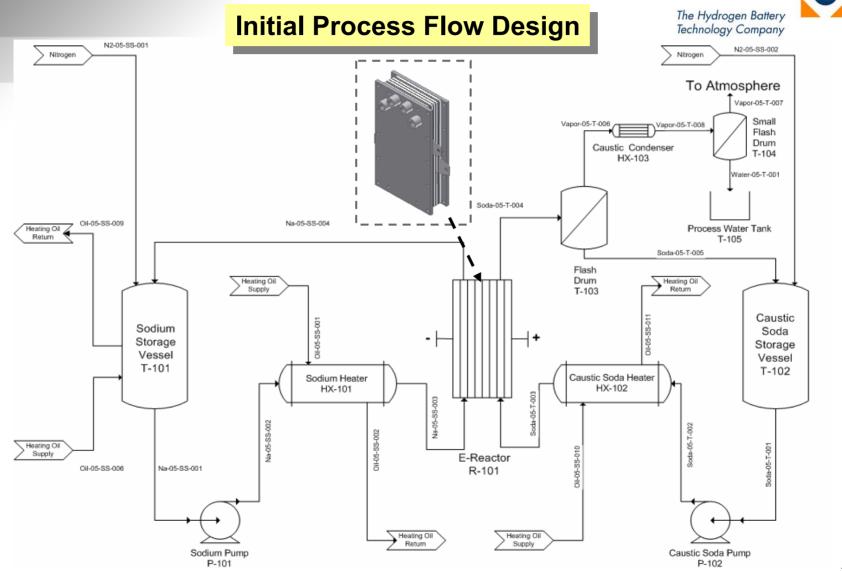
Effects of Membrane Composition

Of the two types of β "-membranes tested, Membrane A exhibits higher current densities and is more resistant to failure than Membrane B

Preliminary Engineering

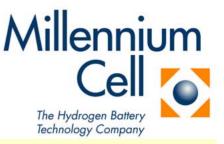
Tasks

- Based on results generated from bench scale experiments, design a process for scale up operation and cost estimates
- Determine materials of construction for components of electrochemical reactor.
- Verify physical properties of membrane.
- Design of electrochemical reactor for continuous flow operation.
- Perform safety and hazard analysis (e.g. FMEA)

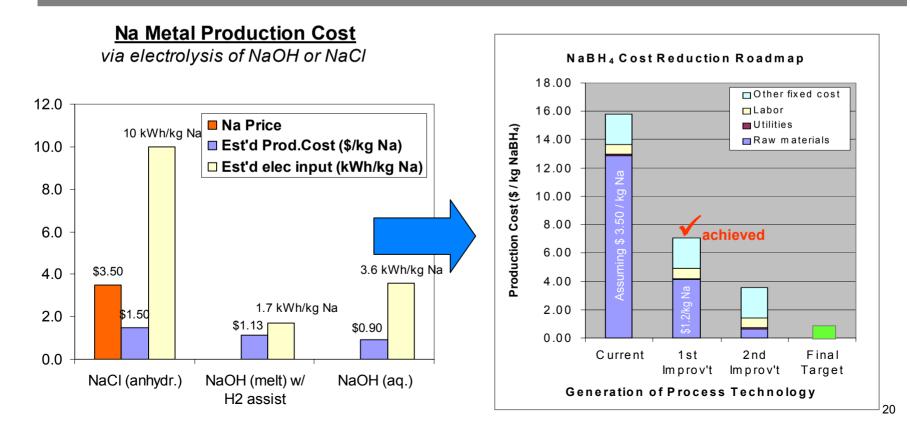

Accomplishments

- Established basic Process
 Flow Diagram (PFD)
- Started to generated equipment list and equipment specifications
- Developed Piping and Instrumentation Diagram (P&ID)
- Completed preliminary mass balance
- Process simulation (modeling) using Aspen HYSYS software

Preliminary Engineering Millennium The Hydrogen Batter Technology Company Area of Membrane Required to Generate 1 kg Na per day 1200 From spent fuel, un-Area of Membrane (cm²) optimized cell at 5 V Estimate from 1000 molten NaOH at 800 6-7 V (lonotec) From molten NaOH at 1.3 V. with H₂ assist (APCI) 600 400 Target 200 0 0 100 200 300 400 500 600 700 800 900 1000 Current Density (mA/cm²)

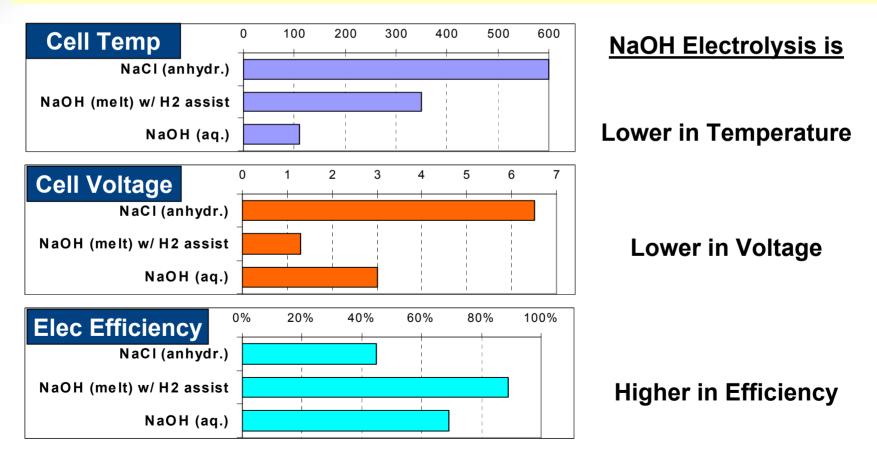

- Molten salt electrolysis requires converting spent fuel to anhydrous starting materials high cost
- Aqueous electrolysis allows the direct use of spent fuel low cost
- Trade-off: lower current density, therefore more membrane required

Process Flow Diagram



Millennium

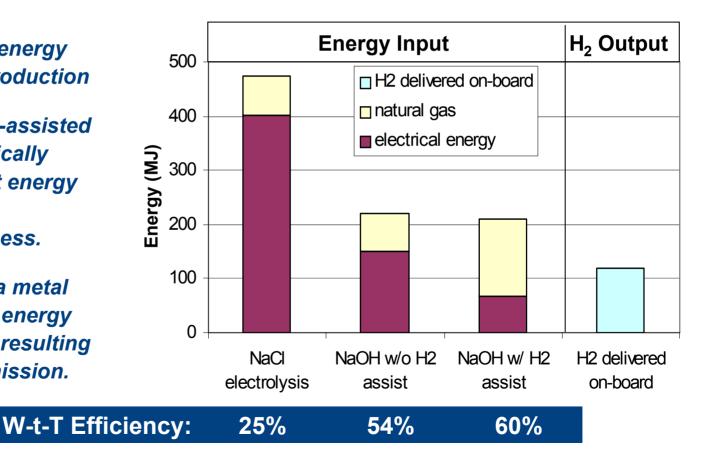
Cost Reduction Summary


- Of the 3 options investigated, only the route via Na cost reduction is mature enough to allow for a reasonable preliminary cost analysis
- For the Na/B co-production route and the direct BH route, more data is needed on reaction yields and electrolytic efficiency before conducting cost analysis

Improvements in Efficiency

Producing Na from NaOH instead of NaCI is more energy efficient

Comparison of Electrical Energy Input


	NaCl (anhydrous)	NaOH (Anhydrous)	Aqueous NaOH
Current efficiency	80 %	100 %	100 %
Voltage efficiency	56 %	90% (with H ₂ -assist)	70 %
Overall electrical efficiency	45%	90%	70%
Temperature	000 °C	350 °C	110 °C
Cell Operating Voltage	6 - 7 V	2.8	4.2
Electrical energy input per kg Na produced	10 kWh/kg	1.6 – 3.6 kWh/kg	2.4 – 4.2 kWh/kg
Estimated Na production cost	\$ 1.57 /kg	\$1.22 /kg	\$0.90 /kg

Well-to-Tank Efficiency

Energy Input for the Production of NaBH₄ via 3 different methods of Na production

- The majority of the energy input is in the Na production
- Producing Na by H₂-assisted electrolysis dramatically reduced the upfront energy input in the NaBH₄ manufacturing process.
- US production of Na metal uses hydro-electric energy almost exclusively, resulting in very little CO₂ emission.

Future Work

Preliminary Engineering Assessment

- Continue materials chemical compatibility tests
- Complete HYSYS process modeling for the process
- Complete safety and hazard assessment

Membrane Testing

- Explore methods to increase current densities in borate electrolysis
- Additional experiments using other inexpensive sodium salts, e.g. borax or borate-caustic mixtures
- Long-term stability tests
- Equivalent quantitative experiments with NaSICON membranes
- Explore new electrochemical cell configuration

Preliminary Cost Assessment

- Complete cost assessment associated with electrolysis of borate
- Coordinate with TIAX

Project Go/no-go Decision with DOE

Summary

- After demonstration SBH regeneration cost reduction via NaOH electrolysis last year, further demonstrated feasibility of direct electrolysis of spent fuel (NaBO₂) to obtain precursors to SBH synthesis, namely Na metal and non caustic borates.
- Expanded the one-pot reaction of borohydride synthesis in medium temperature halide melt to room temperature ionic liquids.
- Initiated process engineering assessment in order to establish cost estimates of SBH regeneration
- Gained significant insight into the concentration sensitivity of the electrolytic processes, particularly its effect on various membranes
- Continue down the path of cost reduction and efficiency improvement