

Chemical Hydride Slurry for Hydrogen Production and Storage

Andrew W. McClaine Safe Hydrogen, LLC 16 May 2007

Project ID # STP16

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start date: 1/1/2004
- Project end date: 12/31/2007
- Percent complete: 80%

Budget

- Total project funding
 - DOE share: \$1.8M
 - Contractor share: \$437K
- Funding in FY06: \$400K
- Funding for FY07: \$450K

Barriers

 Barriers addressed for On-Board Storage

Project also applicable for Delivery, Offboard storage, and MgH₂ Cost reduction

- A. System Cost
- K. System Life-Cycle Assessment
- R. Regeneration Processes

Partners

- Interactions/ collaborations
 - TIAX LLC
 - Professor T. Alan Hatton, MIT
 - Jens Frederiksen, PF&U Mineral Development ApS
 - Hatch Technology, LLC
 - Boston University
 - Metallurgical Viability, Inc.
 - HERA Hydrogen Storage Systems, Inc.
 - Massachusetts Technology Collaborative

Objective and Approach

- Objective Demonstrate that Magnesium Hydride Slurry is a cost effective, safe, and high-energy-density hydrogen storage, transportation, and production medium
 - Pumpable and high energy density slurry offers infrastructure advantages
 - High system energy density with high vehicle range
- Approach
 - Slurry Develop a stable and very fluid MgH₂ slurry with slurry energy density of 3.9kWh/kg and 4.8kWh/L necessary for transportation and distribution
 - Mixer Develop mixing system to use MgH₂ slurry and to meet 2kWh/kg and 1.5kWh/L system targets
 - Cost Evaluate and develop Mg reduction and slurry production technologies to show potential cost of hydrogen, slurry, and system
 - Comparative evaluation of alternate Mg reduction technologies
 - Experimental Solid-oxide Oxygen-ion-conducting Membrane (SOM) process
 - Slurry production and component recycling
 - Mg hydriding, slurry mixing, Oil separation and recycle, Mg reduction

Approach

٠

٠

GFY2 <mark>00</mark> 4							GFY2 <mark>00</mark> 5							GFY2 <mark>00</mark> 6							0	GFY2 <mark>00</mark> 7							GFY20	0		
OND	J F	M	ΑM、	l l	AS		D	J	FΙ	MA	м.	JJ	IAS	0	N	D J	F	M A	۱M	JJ	AS	s	D N	D.	JF	F M	AI	МJ	IJ	A S	OND.	J
			Tas	sk	1 SI	urry	/ C)e\	/el	ор	me	nt																				-
			Task 2 Mixer Development											ł																		
															Task 3 Slur									ry & Mixer Testing								
														Task 4 Recycle						e O	rganics											
					Task 5 Pr										oduce MgH2 from Mg								and H2									
	Task 6 Mg(OH)2 to Mg												P	roc	es	s /	Ana	aly	sis													
Task 7 SOM Process 10												s 10	0 <u>c</u>	jm/	/da	y s	sca	ale														
																								Та	IS	k 8	sc	DN	11	(g/o	day	
																							٦	Tas	sk	11	Pr	00	: Co	ost	Red	
	Task 12 Reporting																															

- Address Show-stopper issues first
- Focus on
 - Slurry development
 - Mixer development
 - Recycling cost estimate
 - Overview study
 - Exp SOM
- Plan two to three investigate-and-review cycles in each area to identify and address design issues

Issues and Options

- Issues that are being address in this project
 - Cost of: hydrogen from a *large scale* magnesium hydride slurry system
 - Cost of: reducing $Mg(OH)_2$, making MgH_2 , recovering the oils
 - Slurry stability: continued pumpability for lengthy storage and delivery to the market
 - Speed and control of hydrogen generation. Mixer needs to enable rapid reaction, with very compact and simple footprint to meet on-board requirements
- Benefits of slurry technology
 - Slurry system can deliver hydrogen to the market with only slight modification to the existing transportation and delivery infrastructure.
 - Slurry based system can be used both as *fueling station* or an *on-board* storage and generation technology
 - Project Research will yield new magnesium and magnesium hydride production technology know-how which will benefit other metal based hydrogen storage technologies

Progress Slurry Development

target: a pumpable slurry that stays liquid for months

- Slurry characteristics depend on:
 - Carrier liquid and dispersant
 - Particle size, size mix and loading
- Continuing size reduction tests
 - Bimodal particle size distributions tested so far has not improved solids loading
- Significant achievements
 - Energy density and fluid stability are continually improving
 - Demonstrated stability of MgH₂ slurry with 70% milled solids loading. This provides a fresh material storage capacity of 3.6 kWh/kg and 4.2 kWh/L (capacity based on spent slurry 1.8 kWh/kg and 3.1 kWh/L)
 - Viscosity measured versus temperature

Progress Slurry Development

target: a pumpable slurry that stays liquid for months

Viscosity of 70% MgH2 Slurry

70% milled slurry Viscosity after 1 week 321-332cP at 25°C Viscosity after 8 months 307-334cP at 21° C

Using Brookfield Model LVDVE115 viscometer · ·

- 70% milled MgH₂ slurry has performed well and has been selected as the new standard slurry
- Slurry viscosity measurements indicate that slurry is non-Newtonian and exhibits characteristics of shear thinning
- Testing continues to evaluate additional slurry preparation strategies

Slurry Stability Evaluation

- Observe settling rate
- Measure viscosity and density

8 months of settling time

•The slurry on the right settled after 1 week. It shows a clear layer of oil over the settled solids.

•The slurry on the left has a very thin layer of oil on top that indicates some settling. This however did not show up for several months indicating a clear improvement in stability. This slurry remixed readily and flows in a manner similar to when it was made.

target: simple compact design providing efficient reaction control

- Desired characteristics of ideal mixer
 - Simple, lightweight, compact
 - Low energy input
 - Reliable cycling on/off
 - Control moisture in hydrogen
 - Rapid start
 - Byproduct handling
- Significant achievements
 - Tested airless paint pump with 70% slurry
 - Demonstrated that piston pump moves slurry reliably
 - Began design, fabrication, and testing of semi-continuous mixer system using piston pumps

target: simple compact design providing efficient reaction control

- Model #4 mixer system designed Fabrication in progress
- Slurry and water pumps along with pneumatic actuated valves are being tested with Parr autoclave apparatus
 - Slurry mixed with water jet
 - Slurry and water are homogenized as they enter reactor

target: simple compact design providing efficient reaction

 Semi continuous mixer system flowsheet

- System mixes water and slurry as they are being injected into reactor
- Multiple reactors provide means of separating byproducts while maintaining flow of hydrogen
- Circulation of reaction water reduces need for external heat

target: simple compact design providing efficient reaction control

- Reaction rates are relatively rapid
- Chart shows sequence of reactions where cold slurry was injected into hot water.
 - Some reactions occurred in sealed reaction vessel showing large pressure rise in the reaction vessel
 - Other reactions proceeded with reaction vessel open to large buffer storage

Progress Recycling Oils

target: Low cost method of recovering oils from byproduct

- Characteristics sought
 - Simple, low cost, low energy process to separate oils from byproducts
 - Recovered oil undamaged from H₂ production process
- Significant achievements
 - Recycled oils used in the preparation of slurry
 - Slurry with recycled oil used in continuous mixer tests

Progress Hydriding Mg

target: Low cost method of hydriding

- Characteristics sought
 - Low cost process
 - Low energy consumption
- Opportunity
 - MgH₂ is reported to be autocatalytic
- Significant achievements
 - MgH₂ autocatalytic nature confirmed
 - MgH₂ produced from mixture of Mg and MgH₂
 - Hydriding process appears to be relatively simple and thus relatively inexpensive
 - Hydriding work resulted in patent application

Progress - Recycling MgO

Target: determine energy efficiencies and costs of alternative recycling processes

- Task plan
 - Evaluate Mg reduction alternatives
 - Determine operating and capital costs using bottom up approach
 - Evaluate cost of hydrogen using H2A framework
- Process steps
 - Reclaim oil
 - Calcine Mg(OH)₂ to MgO
 - Reduce MgO to Mg
 - Hydride Mg + $H_2 = MgH_2$
 - Mix slurry

Significant Results

- SOM offers lowest energy consumption, reduction process can operate at 10 kWh/kg of Mg
 - Demonstrated in laboratory experiments at Boston University
- H2A analysis of SOM based Safe
 Hydrogen slurry system resulted in estimated cost of hydrogen at \$3.88/kg at plant gate; \$4.50/kg at pump. 15

Progress - Recycling MgO

H2A tornado chart showing effect of varying costs of energy, labor, O₂ byproduct, capital, and process H₂

Magnesium Hydride Slurry Using SOM Process

16

Magnesium Hydride Slurry Using SOM Process

Feedstock cost of electricity base \$0.029/kWh

Capital Cost Equipment (base 591M, range 50% to 500%)

Cost of electricity (base \$0.029/kWhr, range \$0.01 to \$0.06)

Labor (base 266 men, range 133 to 532)

Oxygen Byproduct Value (Base \$0.02/kg, range 0 to \$0.04/kg)

Feedstock cost of H2 (base \$1.65/kg, range \$1.00 to 2.00)

Capital Cost (Installation factor base 2.03, range 1.2 to 2.47)

Tornado charts with baseline cost of electricity of \$0.055/kWhr

Tornado charts with baseline cost of electricity of \$0.029/kWhr

2

Conclusion: Cost of hydrogen from SOM process is strongly affected by the cost of electrolysis energy but industrial scale energy costs should produce plant gate hydrogen costs <\$4/kg H₂

Progress - Recycling MgO

Assumptions used in H2A analysis of resulting hydrogen cost

- Baseline case
 - Mature large-scale plant, all power produced from captive power plant
 - 2.4 GWth power plant producing
 - electricity (45% eff)
 - hydrogen (50% eff from thermal energy)
 - Cost of electricity \$0.029/kWhe
 - Cost of H₂ \$1.65/kg
 - Electrical energy needed to produce Mg 10kWhe/kg Mg
 - Based on above assumptions, power plant will use 1.85 GWth for Mg and 545MWth for H₂ production. The plant will produce 731,174 metric ton/yr of Mg, 60,629 metric ton/yr of H₂ and 481,176 metric ton/yr of O₂ as byproduct for sale
 - Slurry will produce 121,257 metric ton/year of hydrogen
 - Mg plant would be comparable to some of today's larger Al plants
 - The slurry production plant is assumed to have a capital cost about 25% of that of current MgCl₂ plants. Cost analysis, using a bottom up approach, still has much uncertainty but seems reasonable.

Cost of Hydrogen Using H2A Framework

- SOM Production at large scale
 - \$3.884/kg H_2 at the plant gate
- Chemical hydride terminal cost
 - \$0.158/kg H₂
- Transportation 200 km cost
 - \$0.198 to 0.231/kg H₂
- Distribution Forecourt Chemical Hydride Slurry
 - \$0.243/kg H₂
- Total
 - \$4.483 to \$4.516/kg H₂ at pump

Progress SOM

target: low cost method of reducing MgO to Mg

- Significant achievements
 - Demonstrated Mg production at a rate of 160gm/day with a single membrane tube
 - Estimated operating and capital costs of the SOM cell module producing 2 metric ton/day of Mg using 37 tubes
 - SOM experiment was operated for 2 days with periodic addition of MgO
 - Successful operation without an anode reductant using a liquid silver anode
- Current focus
 - Modeling the single and three tube SOM reactor
 - Defining design options for a condenser to produce Mg powder and $\mathrm{MgH}_{\mathrm{2}}$

Accomplishments

- Improved slurry stability and flow characteristics with modifications to dispersants and with particle size reduction. Current 70% milled solids loading.
- Demonstrated continuous production of hydrogen from continuous mixer using heat recovery and start/stop of slurry and water
- Observed simple method of separating oils from byproducts
- Demonstrated MgH₂ production from Mg and H₂ using mixture of Mg and MgH₂
- Mg reduction studies show \$3.88/kg H2 production cost estimate using H2A analysis framework. \$4.50/kg H₂ at pump
- SOM process demonstrated for 2 days with periodic replenishment of MgO producing Mg at rate up to 160 g/day

Future Work

- FY07 Plans
 - Completing fabrication and testing of semi-continuous batch mixer system
 - Testing of slurry and mixer for robustness and hydrogen purity
 - Evaluate operation at lower temperatures
 - Organics recycle process cost analysis
 - MgH₂ production process cost analysis
 - Updating production cost analysis
 - SOM cell experiments using 3 tube cell
- FY08 Plans
 - Complete project testing and reporting
 - Seek additional funding to design commercial scale prototypes of chemical hydride slurry systems for R&D users and for prototype fueling station evaluations
 - Seek funding to develop rechargeable slurry technologies discovered during this project

Project Summary

What have we done & what does it mean

- The primary technical, cost, and efficiency concerns have been addressed
 - Technical
 - Pumpable, stable slurry can be made enabling the use of current distribution infrastructure
 - Slurry can be mixed with water in a simple, low cost device to produce H₂ from both water and slurry
 - SOM process development is progressing well
 - Cost & Efficiency
 - Oils can be easily separated from byproducts ensuring a low cost recycling process (detailed cost estimate remains)
 - Mg can be easily hydrided promising a low cost regeneration process (detailed cost estimate remains)
 - Mg reduction process costs can likely be reduced to provide \$3.88/kg H₂ using estimate of SOM 37 tube cell and H2A framework shows cost path to meet DOE targets
 - Full system efficiency appears to be comparable to LH_2 and cH_2 options
- Upcoming work will refine and improve the results achieved to date