Complex Hydrides for Hydrogen Storage Studies of the Al(BH₄)₃ System

Gilbert M. Brown PI, Joachim H. Schneibel Co-PI, R. H. Ilgner, D. A. Knight, and R. M. Smithwick, III

> Oak Ridge National Laboratory Oak Ridge, Tennessee

In Collaboration with the DOE Metal Hydride Center of Excellence

May 16, 2007

Project ID #: STP24

(This presentation does not contain any proprietary information)

Overview

Timeline

- Start: March 1, 2005
- End: Sept 30, 2010
- 40% complete

Budget

Barriers Addressed

- Weight and volume
- Hydrogen capacity and reversibility
- Lack of understanding of hydrogen chemisorption and physisorption
- Total project funding \$1.9 M (DOE 100%)
- Funding for FY06 \$300K
- Funding for FY07 \$300K

Partners/Collaborators

- Participant in the MHCoE
- GE (diborane chemistry)
- Sandia (Raman)
- JPL (NMR)

Program Objectives

Develop the chemistry for a hydrogen storage system based on complex hydrides, chosen from the borohydrides, amides/imides, alane, or the alanates of the light elements in the periodic table.

- ORNL is developing new materials and methods for synthesis of new and known materials. The ORNL goal is to employ solvent-based procedures appropriate for scale-up to production and practical application.
- Two general tasks:
 - The discovery and characterization of new materials and processes.
 - The development of synthetic methods and processes in support of MHCoE collaborators.

Target Materials and Processes:

- complex anionic materials (MHCoE Project B)
- amide/imide (M-N-H) systems (MHCoE Project C)
- regeneration of alane (MHCoE Project D).

ORNL's Contribution

Research at ORNL takes advantage of expertise in synthesis (inorganic, organometallic and organic)

Synthetic Capabilities: Synthetic methods in solution – vacuum line, Schlenk line, cannula, and glovebox methods to handle oxygen and water sensitive materials, reactions in liquid ammonia.

Characterization Methods: Temperature programmed decomposition, reaction products determined with mass spectrometry, in-situ X-ray diffraction, IR and Raman spectroscopy, NMR spectroscopy, Sievert's apparatus for P-T-C determination, high pressure reactor (2000 psi)

Results in Prior Years

Focus of work in FY05 and first quarter FY 06 was LiAlH₄ and sodium-magnesium amide systems Investigated effect of additives on the decomposition of LiAlH₄

- Preparation of organometallic compounds of Ti for use as catalysts for liberation and uptake of hydrogen from LiAlH₄.
- Preparation of Ti catalyst by reaction of Ti(NR₂)₄ with liquid ammonia
- Transition of work to focused projects within MHCoE in second quarter of FY06

ORNL participated in:

Project B – Complex Anionic Materials (borohydrides and alanates)

Project C – Amides/Imides (M-N-H systems)

Attention directed to covalent borohydrides in last quarter of FY 06

Technical Achievements – MHCoE Project B – Complex Anionic Materials (borohydrides and alanates):

Covalent metal borohydrides are high hydrogen content materials which decompose to give hydrogen.

- Borohydride complexes of AI, Ti, and Zr have been shown to be precursors for the CVD of metal borides with the evolution of H_2 as a by-product.
- Volatile or liquid hydrogen storage material will have some engineering advantages for scale-up – heat and mass transfer.
- M(BH₄)₃ where M = AI, Ti are known to react with LiBH₄ to make non-volatile salts Li[M(BH₄)₄].

Chemistry of Liquid and/or Volatile Metal Borohydrides

7

Thermal decomposition of $AI(BH_4)_3$, $Ti(BH_4)_3$, and $Zr(BH_4)_4$ under investigation for H₂ storage

Covalent molecular compounds have double bridge M-H-B bonding as illustrated for $Al(BH_4)_3^*$

Dalton Trans., 1007, 1997.

OAK RIDGE NATIONAL LABORATORY

Preparation and Reactions of $Al(BH_4)_3$ AlCl₃ + 3 LiBH₃ \rightarrow Al(BH₄)₃ + 3LiCl

A 50 - 130 °C, stepwise replacement reaction.*

The product is a volatile, pyrophoric liquid (120 torr at $0 \,^{\circ}$ C, $\rho = 0.55$ g/mL) that can be isolated and purified on a high vacuum line.

Final product can be characterized by MS, IR, and NMR analysis.

The key component in this reaction is to use a two fold excess of finely ground $LiBH_4$, which is necessary in order to achieve a 94 % yield.

* Schlesinger, H. I.; Brown, H. C.; Hyde, E. K.; J. Am. Chem. Soc.; 75, 209, 1953.

Thermal Decomposition of Al(BH₄)₃ Reaction Conditions

- ~1.5 to 3.0 mmol of Al(BH₄)₃ material was collected in a liquid N₂ cold trap adjacent to the reaction tube.
- Al(BH₄)₃ vapor (vapor pressure = 359 torr at 25 °C) was allowed to flow into the reaction tube which was constantly heated at selected temperatures.
- H_2 and B_2H_6 levels were examined and removed from the reaction tube at regular (15 60 min.) intervals.

Thermal Decomposition of Al(BH₄)₃ – theory 16.8 % H_2

Product distribution is temperature dependent – 3 to 6 hr reaction time

Temperature ° C	H ₂ per Al(BH ₄) ₃ (wt % H ₂)	B ₂ H ₆ per Al(BH ₄) ₃	Residue
175	1.4 (3.9 wt %)	0.68	Colorless, sublimable residue, likely composition $[AIH(BH_4)_2]_2$
200	1.3 (3.8 wt %)	0.36	Both light brown and colorless residue
250	3.5 (10.0 wt %)	0.16	Dark brown residue with a trace of colorless residue
300	5.0 (13.8 wt %)	0.41	Dark brown residue
350	5.4 (15.3 wt %)	trace	Dark brown residue
400	4.5 (12.7 wt %)	trace	Dark brown residue

Product Formation Offer Clues to the Al(BH₄)₃ Pyrolysis Mechanism and Its Potential for Reversible Hydrogen Storage:

- Elemental analysis of the residue formed at the higher temperature indicates only AIB₃ remains.
- The colorless residue found at low temperatures is suspected to be the [AIH(BH₄)₂]₂ dimer.
- The first step in the $AI(BH_4)_3$ pyrolysis appears to be the release of diborane, followed by its own thermal decomposition to form H_2 .

Loss of Diborane Results in the Formation of the $Al_2H_2(BH_4)_4$ Dimer:

At the lower temperatures (<200° C), an equilibrium was established between $AI(BH_4)_3$ and $AI_2H_2(BH_4)_4$ as shown in:

$\mathbf{2AI(BH_4)_3} \leftrightarrow \mathbf{AI_2H_2(BH_4)_4} + \mathbf{B_2H_6}^*$

* (a) Maybury, P. C.; Larrobu, J. C.; *Inorg. Chem.*, 2, 885, **1963**. (b) Noth, H.; Rurlander, R.; *Inorg. Chem.*, 20, *1063*, **1981**. (c) Demachy, I.; Volatron, F.; *Inorg. Chem.*, 33, 3965, **1994**.

Diborane Pyrolysis is a Complex Mechanism Forming H₂ in Several Steps:*

* L. H. Long, J Inorg Nucl Chem, 32, 1097, 1970. and references therein.

Product Formation Offer Clues to the Al(BH₄)₃ Pyrolysis Mechanism and Its Potential for Reversible Hydrogen Storage:

- The equilibrium observed between $AI(BH_4)_3$ and $AI_2H_2(BH_4)_4$ suggests one route of hydrogen storage reversibility.
- The complex diborane decomposition mechanism also indicates several points of reversibility.
- These two anomalies combined may be key factors leading to the viable regeneration of metal borohydride hydrogen storage materials.

Near Future Directions – FY07

- Continue investigation of AI(BH₄)₃ decomposition reactions under flash vacuum pyrolysis conditions; determine product ratio [H₂]/[B₂H₆]
- Determine conditions to make evolution of hydrogen from $AI(BH_4)_3$ reaction reversible
- Collaborate with E. Majzoub (Raman spectroscopy) and R. C. Bowman (NMR) for characterization of intermediate decomposition products of Al(BH₄)₃
- Prepare $Ti(BH_4)_3$ and determine decomposition products, reversibility
- Prepare known solid compounds $LiM(BH_4)_4$ where M = AI, Ti by reaction of $M(BH_4)_3$ with $LiBH_4$ in solution; and examine the thermal decomposition reactions and reversibility of these materials.
- Collaborate with J. C. Zhao (GE) to study reactions of diborane.
- Use vacuum line and mass spectrometry facilities to determine yield of diborane as a product of decomposition of other metal borohydrides such as Ca(BH₄)₂ and Mg(BH₄)₂.

Future Directions – FY08 and beyond

Test Ti and Ti-Al catalysis of decomposition reaction of aluminum borohydrides, determine whether the reaction is reversible, and examine the influence of a catalyst on the product distribution.

Prepare Ca[M(BH₄)₄]₂ and Mg[M(BH₄)₄]₂ where M is AI, Ti and examine the thermal decomposition reactions and reversibility of these materials.

Understand medium dependence of reaction of diborane with metal hydrides in general

MHCoE Project C – Amides/Imides (M-N-H systems) Future Directions – FY07 and FY08

Develop New Materials from Investigation of Ammonolysis Chemistry of Metal Dialkylamides in Liquid Ammonia:

- Prepare amides (and imides or nitrides) of Mg and Al in liquid ammonia from ammonolysis of M(NR₂)_n precursors; incorporate Ti catalyst as "Ti₃N₄" using the previously characterized product of the ammonolysis of Ti(NR₂)₄ in liquid NH₃.
- Investigation, preparation, and decomposition reactions of $LiAl(NH_2)_4$; combine this material with LiH, MgH₂, or CaH₂ – use the decomposition of Al(NH₂)₃ to AlN and NH₃, the latter of which reacts with the metal hydride to produce hydrogen.
- Utilize high solubility of alkali metal borohydrides in liquid ammonia as a preparative route for mixed metal amides and borohyrides

Summary

- Pyrolysis of aluminum borohydride demonstrates how a substantial amount of hydrogen can be obtained from these complex borohydride materials.
- The equilibrium observed between $AI(BH_4)_3$ and $AI_2H_2(BH_4)_4$, in conjunction with the complex mechanism of the pyrolysis of diborane, suggests a route for reversible hydrogen storage.
- Further studies involving a variety of metal borohydrides are planned to identify those materials having the most favorable hydrogen evolution and regenerative capabilities.
- Focus of future chemistry is expected to be complex hydrides of AI, Mg, and Ti

