

Development and Evaluation of Advanced Hydride Systems for Reversible Hydrogen Storage

Robert C. Bowman

& Joseph W. Reiter

Jet Propulsion Laboratory

California Institute of Technology Pasadena, CA 91109-8099

- A Participant in the DOE Metal Hydride Center of Excellence -

May 16, 2007

This presentation does not contain any proprietary or confidential information

Project ID # **STP32**

Overview

Timeline

- Project start date: FY05
- Project end date: FY09
- 50 % complete

Budget

- Expected total project funding: – \$1.859M (DOE)
- Funding received in FY06
 \$311K (DOE)
- Funding received for FY07:
 \$400K (DOE)

Barriers/System Targets

- A. System Weight and Volume
 - 2010 Targets: 6 wt.% & 45 gH/L
- D. Durability/Operability
 - 2010 Target: Life of 1000 cycles
- E. Charging/Discharging Rates
 - 2010 Target: Fill time of 3 min for 5 kg H_2
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

Partners

- Participant in DOE MHCoE collaborations with partners in all five sub-group Projects [primarily with Caltech, HRL, NIST, GE Global, U. Hawaii, BNL, SNL, U. Utah in FY-06 & FY-07]
- Washington U. and Caltech in support a BES H₂ Storage Project on solid state NMR studies of light element hydrides
- International: IFE (Norway), Philips (Netherlands), CNRS (France), and AIST (Japan)

California Institute of Technology

Develop and demonstrate light-metal hydride systems that meets or exceeds the 2010/2015 DOE goals for on-board hydrogen storage

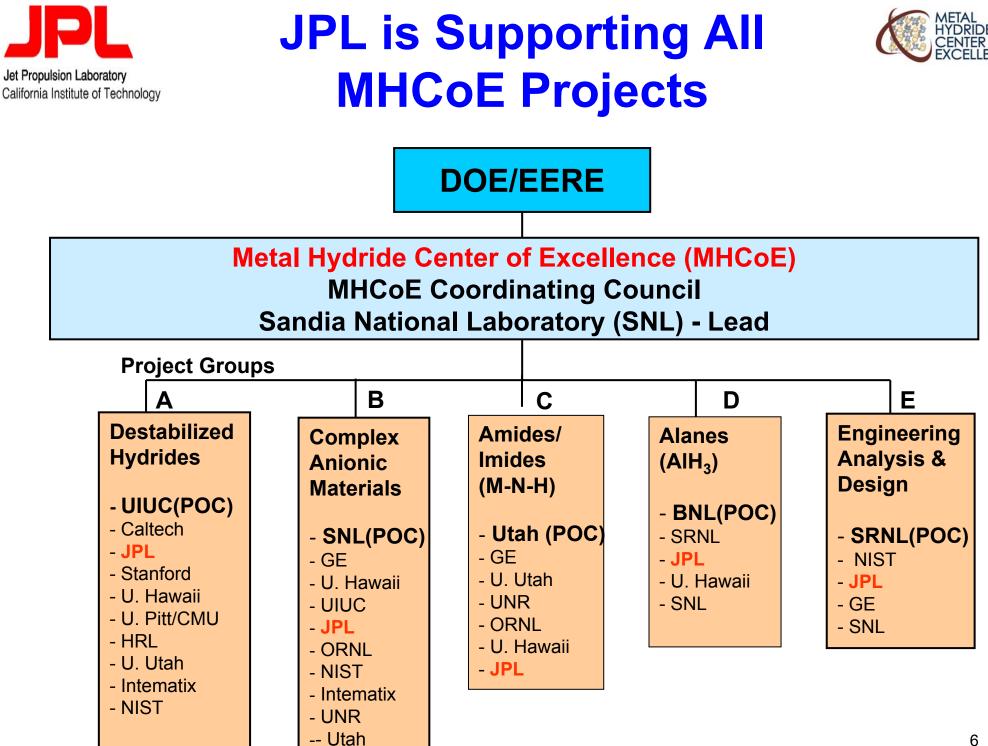
- (1) Validation of initial storage properties and reversibility in light element metal hydrides and assess their aging durability during extended cycling
 - Nanophase, destabilized hydrides based upon LiH, MgH₂, & LiBH₄ produced at Caltech, U. Hawaii, NIST, & other MHCoE partners.
 - Complex hydrides (e.g., amides/imides, borohydrides, & AlH₃-hydrides) provided by GE, U. Utah, U. Hawaii & other MHCoE partners
- (2) Support developing lighter weight and thermally efficient hydride storage vessels and experimentally demonstrating their compatibility with appropriate complex and destabilized nanophase hydrides.

FY06/FY07 Objectives:

- Evaluate behavior of destabilized MgH₂/LiBH₄ systems to assess • reversibility, kinetics, & H₂ storage parameters against targets.
- Characterize phases & chemical bonding via MAS-NMR for Li ٠ amides/imides, AIH₃, borohydrides, & selected other hydrides provided by MHCoE partners to better understand basic chemisorption processes.
- Start extended cycling tests on at least one destabilized & catalyzed ٠ hydride to assess lifetime potential & durability – however, this system needs to have viable kinetics and reversibility to justify commitment.

Approach of JPL in MHCoE – Materials Development

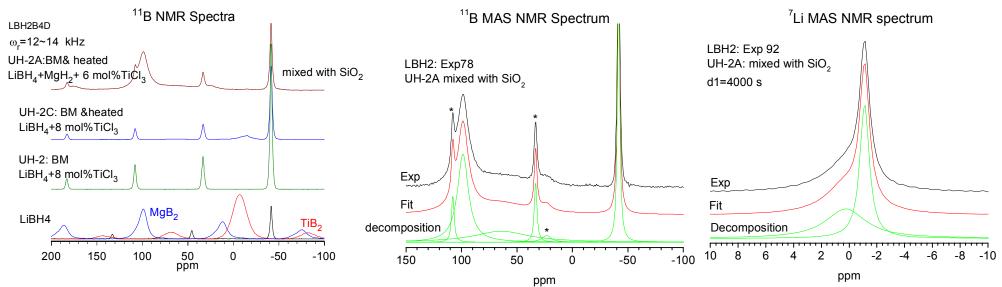
Perform Analysis and Characterization of Selected Hydrides:


- Volumetric measurements hydrogen storage capacities and pressures on destabilized nanophase and complex metal hydrides.
- Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) measurements performed at Caltech Solid State NMR Facility to assess the phase compositions and chemical bonding parameters.
- Examinations by neutron scattering and diffraction, etc. in collaboration with MHCoE partner NIST.

Prototype Hydride Beds Development and Life Testing:

- Support development of more efficient hydride storage vessels to reduce storage system mass and demonstrate their compatibility with appropriate complex and destabilized nanophase hydrides.
- Support system design and analyses using methods established at JPL for sorption cryocooler hydride compressor beds.
- Evaluate the performance and robustness of candidate hydrides using well-characterized experimental test-beds during many cycles of hydrogen absorption and desorption.

Task A - Destabilized Hydride Systems



• JPL Objectives:

 Validation of initial storage properties and reversibility in nanophase, destabilized hydrides based upon LiH, MgH₂, LiBH₄ & others and also to assess their aging durability during extended cycling for any promising candidates.

• Accomplishments in FY-06/07:

- MAS-NMR determined phase formation and reversibility in LiBH₄/MgH₂ (U. Hawaii):
 - ⁷Li, ¹¹B and ¹H MAS-NMR spectra showed different phases with variation in hydrogen contents – undergoing more systematic studies of phase conversion, reversibility, catalytic effects, & degradation behavior.

The ¹¹B NMR peaks centered at -41 ppm are from LiBH₄ while the peak at 98.4 ppm for sample UH-2A is from MgB_2 with a content of about 45 % (see center spectra deconvolution). ¹¹B CPMAS NMR and ¹H decoupling experiments indicate that the broad peaks at ~ 100 ppm don't couple with ¹H, consistent with the assignment MgB_2 phase. The ⁷Li NMR peaks show formation of LIH phase for sample UH-2A.

Investigation of the "ScH₂ + 2LiBH₄ = 2LiH + ScB₂ + $4H_2$ " Destabilization Reaction

MAS-NMR Spectra: As Milled & Reacted

Jet Propulsion Laboratory California Institute of Technology

X-ray Diffraction [Not Very Helpful]

1400 ⁴⁵Sc MAS NMR ¹¹B NMR Spectra LBH2Sc1A LBH2B2A ω_=13 kHz 1200 As milled ω_r=12, 13 kHz ScH2 LiBH4 20 °C **"B**" 1000 LiBH4 140 °C Intensity 800 LiBH₄/ScH₂ (Des/Abs) LiBH₄/ScH₂ (Des/Abs) 600 as BM 400 x1/5 as BM 200 ScH1.36 LiBH4 1000 ppm 2000 20 30 40 50 60 400 200 0 -200 2 theta angle -400 ppm 200 Detected only ScH₂ Dehydrogenated ŚcH2-2LiBH4 ScH2 LBH2Li1D 150 ⁷Li MAS NMR ω_r=13 kHz ScH₂+LiBH₄ Some LiBH₄ converted into Intensity 100 elemental boron (not ScB_2) Des/Abs as BM d1=60 s d1= 4000 s 50 20 30 50 60 40 70 two theta angle 0 -10 10 -10 -20 20 10 0 -20 20 ppm ppm

Only $LiBH_4$ in "as BM", but also LiH (seen in d1=4000s scan) in "Des/Abs" sample

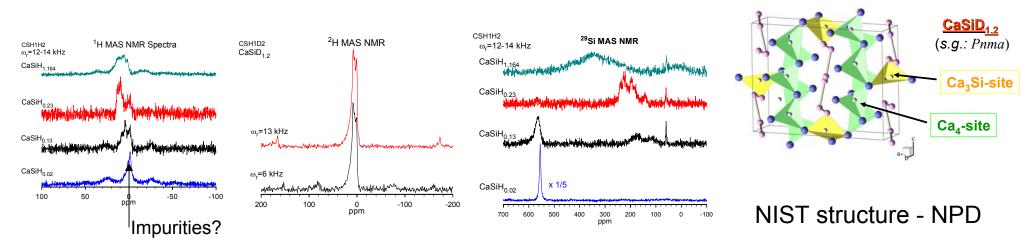
<u>Summary</u>: Desorption did Not follow the destabilized process of forming ScB_2 . Had only partial decomposition of LiBH₄ into LiH + B with little reversibility indicated during absorption.

8

IPL Group B - Complex Anionic Materials

Jet Propulsion Laboratory California Institute of Technology

JPL Objectives:

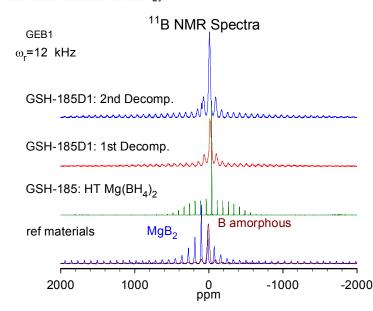

Support phase characterizations and structure & bonding properties for new borohydrides [i.e., $Mg(BH_4)_2$, $Ca(BH_4)_2$] and silicide hydrides [i.e., Ca-Si-H] with NMR measurements in collaboration with SNL, GE Global, NIST, Caltech, & LLNL

Accomplishments in FY-06/07:

•MAS-NMR measurements at Caltech Solid State NMR Facility on various complex hydrides.

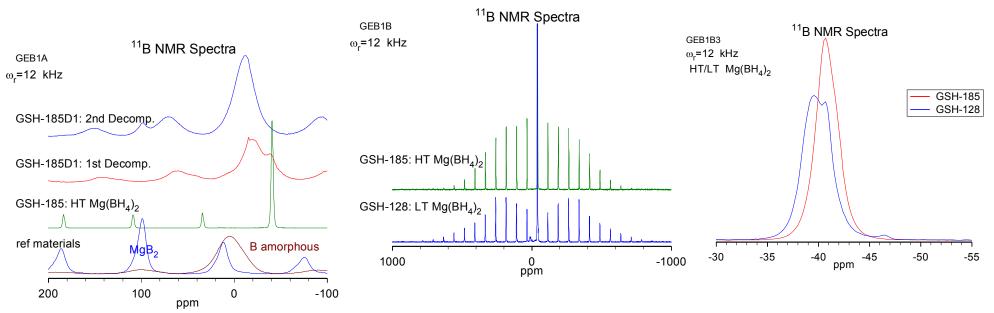
•Supporting analyses of NMR data from LLNL on Ca-B-H and Na-Si-H samples

•Performing MAS-NMR on Mg(BH₄)₂ and Sc(BH₄)₂ phases to assess compositions and transformations as well as look at diffusion processes to understand & improve kinetics


•CaSiH_x (NIST) –²⁹Si, ¹H, & ²H MAS-NMR spectra showed changes with hydrogen contents, but oculdn't confirm 2-site occupancy in CaSiH_{1.2} sample from proton or deuteron spectra.

First MAS-NMR Results for Mg(BH₄)₂ System

Jet Propulsion Laboratory California Institute of Technology



Mg(BH₄)₂ Samples from GE

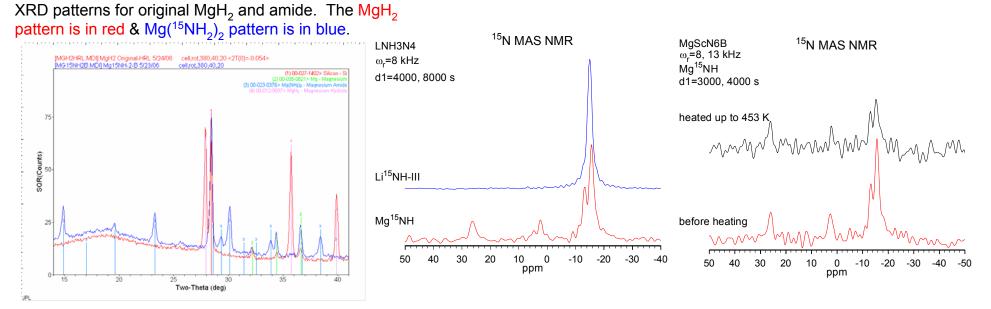
1. GSH-185 as synthesized high temperature (HT) modification of $Mg(BH_4)_2$

- 2. GSH-185D1 decomposed through the first step (MgH₂
- + amorphous B by XRD)
- 3. GSH-185D2 decomposed through the second step (Mg + amorphous B by XRD)

4. GSH-128 Mg(BH_4)₂ as prepared low temperature (LT) phase

NMR data still being analyzed to evaluate phases & local structures.

California Institute of Technology



• JPL Objectives:

- Improve understanding on formation, processing, and degradation of amides/imides.
- Provide novel insights on the phase compositions and local chemical bonding parameters for crystalline and highly disordered (i.e., amorphous) phases at various stages of reactions.
- NMR results critically test and complement theoretical modeling of mechanisms for phase transformation including assessing role of ammonia on reaction & degradation

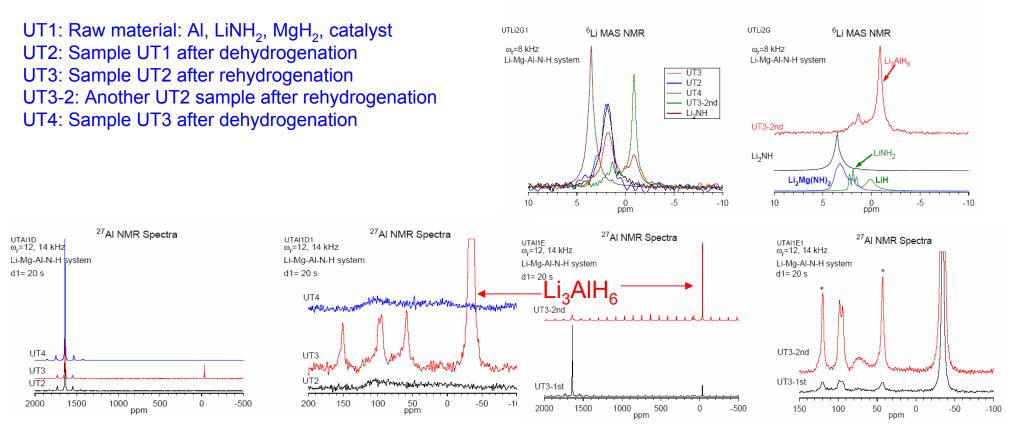
Accomplishments in FY-06/07:

Prepared ¹⁵N enriched Mg(¹⁵NH₂)₂ with characterization by XRD and ¹⁵N MAS-NMR

•Synthesis of $Mg({}^{15}NH_2)_2$ was much more difficult than anticipated from literature.

•See differences in ¹⁵N NMR spectra between Li amide (1 peak) & Mg amide (~4 peaks) – not quantitatively interpreted yet!

•Use this Mg(¹⁵NH₂)₂ material to prepare Mg imide/nitride & Li-Mg-N-H phases to evaluate -NH₂ & -NH bonding 11 and dynamics using ¹⁵N NMR spectra



Task C: Evaluations of Amides/Imides (Continued)

 Demonstrated the reversible reactions in Li-Mg-Al-N-H samples from U. Utah using ⁶Li and ²⁷Al MAS-NMR spectra.

⁶Li NMR study of Li₂NH

•NMR confirmed that Li_3AIH_6 is in the hydrogenated product – meaning the reaction is reversible! •NMR verified the basic reaction hypothesis – $Li_2Mg(NH)_2$ and AI metal are confirmed as the dehydrogenated products.

Task D: Evaluations of Alanes

JPL Objectives:

•Use NMR & other methods to provide novel insights on the phase compositions and local chemical bonding parameters for crystalline and highly disordered (i.e., amorphous) phases of AIH_3 .

Accomplishments in FY-06/07:

•MAS-NMR measurements on various AIH₃/ AID₃ samples.

•Samples with α -, β - and γ -phases from BNL, UTRC, and U. Hawaii measured

•Monitored AI metal formation during spontaneous decomposition and in-situ heating

•SEM Images from JPL of α -AIH₃ from different sources [Only BNL-Dow has trapped H₂ gas]

Task D: Evaluations of Alanes (Continued)

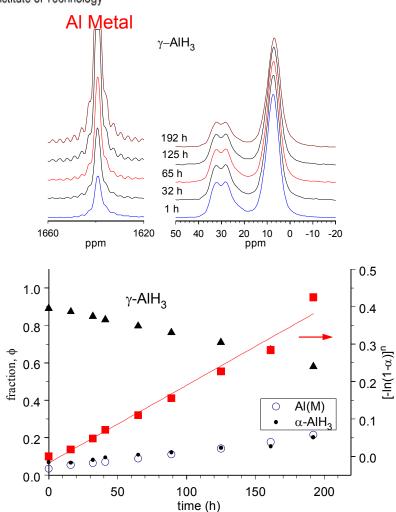
LMg4Al1

ω_r=0 kHz

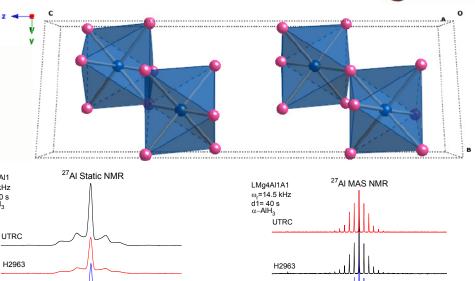
d1= 40 s α–AlH₃

DOW

700


200

ppm


-300

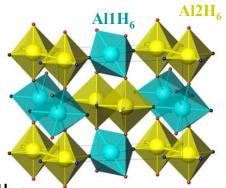
Jet Propulsion Laboratory California Institute of Technology

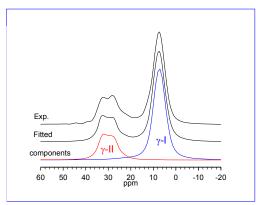
Plot of fraction (ϕ) of γ -AlH₃, Al(M), and α -AlH₃ during the room temperature decomposition of the γ -AlH₃ sample, and plot of [-ln(1- α)] vs t, where α is the fractional decomposition of γ -AlH₃.

DOW

1000

0


maa


-1000

-2000

2000

 $\alpha\text{-phase}$ has only a single ^{27}Al peak

 $\gamma\text{-phase}$ has two ^{27}AI peaks in MAS-NMR

Task E: Engineering Analysis & Design

JPL Objectives:

 Support developing lighter weight and thermally efficient hydride storage vessels and experimentally demonstrating their compatibility with appropriate complex and destabilized nanophase hydrides.

Accomplishments in FY-06/07:


- Participated in several Hydrogen Storage Systems Analysis Working Group (SSAWG) meetings on prospects & limitations of various solid storage methods.
- Leading an EADT sub-team to assess status of previous & current metal hydride storage bed designs and performance models based upon survey of published literature.
- Began surveying approaches within modeling codes & bed design (i.e., "black box" vs detailed configuration) for input requirements and analysis methodology
- Started to specify predictive requirements & capabilities for each modeling approach to reproduce available test results

Deferred conducting any cycling tests in FY-06 as LiBH₄/MgH₂ system is not currently attractive for study due to slow kinetics & poor reversibility while the Li-Mg-N-H system was de-emphasized by MHCoE/SNL – plan to start accelerated cycling tests by end of FY-07 if a viable candidate is identified from screening assessments currently in progress.

Cycling and Lifetime Testing

Jet Propulsion Laboratory California Institute of Technology


Long-term material/component cycling

- Automated, PC-controlled cycling station for large (~1 kg mass) hydrogen storage components
- Originally developed and used for flight-testing of the Planck spacecraft hydride compressor beds
- Suitable for evaluating advanced hydrides for fuel cell storage materials.

Rapid cycling and characterization

- Automated, PC-controlled station with UHV capability and RGA mass spectrometry
- Capable of performing multiplexed cycling experiments on several parallel samples

Planned Future Work (FY07/08)

Task A. [Destablized Hydrides]

 California Institute of Technology
 Complete phase formation & reversibility studies on model Li-B-Mg-H, and other LiHbased destabilized systems (w/HRL, NIST, Caltech).

Task B. [Complex Anionic Materials]

•Continue the characterization of H bonding in the Ca-Si-H system (w/NIST).

•Pursue possibilities of aiding MHCoE partners and others associated with such systems as $Mg(BH_4)_2$ (GE), Ca(BH₄)₂ (SNL), catalyzed borohydrides and alanates (U. Hawaii and IFE), and NaMgH₃ (SRNL and Washington U.)

•Greater effort of using ²H MAS-NMR on deuteride samples to determine locations and dynamics for hydrogen isotopes in disordered and nanophase hydrides.

•Continue collaboration with Washington U. [Mark Conradi, et al.] on NMR studies of diffusion and phase transformations in complex hydrides – emphasis on roles of catalysts.

Task C. [Evaluations of Amides/Imides]

•Continued systematic ¹⁵N, ⁶Li, MAS-NMR studies of Li-Mg-Al-N-H phases from U. Utah •Investigate impact of catalysts on reactions kinetics, diffusion, and reversibility for these materials.

Task D: [Evaluations of Alanes]

•Continue assessments of AIH_3 phases and decomposition processes (U. Hawaii, IFE-Norway, BNL)

Task E: [Engineering Analysis & Design]

Complete literature survey review on state-of-hydride beds designs and performance.
Develop prototype hydride bed for accelerated performance and cycling tests
Perform accelerated cycling study on at least one promising hydride material.

Summary of JPL in MHCoE

California Institute of Technology

Approach: JPL supporting MHCoE goals/objectives in two areas

- 1. Systematic characterizations of phase formation and hydride reversibility using solid state NMR and volumetric measurements (Projects A, B, C, & D)
- 2. Development of improved hydride storage vessels and system engineering of high performance and long life materials (Project E)

Technical accomplishments and progress:

- Phase characterization, kinetics (i.e., diffusion parameters), & reversibility assessments via NMR in numerous systems (i.e., Li-Mg-B-H, Li-Sc-B-H, Li-B-Ca-Al-H, AlH₃, Li-Mg-AI-N-H) that complement and extend theoretical modeling and empirical discovery studies by MHCoE partners.
- NMR analysis is identifying amorphous/nanophase species that are not distinguishable via x-ray diffraction or vibrational spectroscopy methods.
- Initiated survey review of hydride storage vessels designs, modeling, and performance to assess state-of-art and directions for improvements.
- MHCoE Collaborations: Caltech, HRL, NIST, U. Hawaii, U. Utah, BNL, SNL, SRNL, GE Global
- Future Research: Continue NMR/volumetric characterizations of promising candidates and increase system engineering efforts on modeling behavior and materials degradation during extended absorption/desorption cycling studies.