

Neutron Characterization and Calphad in support of the Metal Hydride Center of Excellence

Terry Udovic Ursula Kattner

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

May 16th 2007

STP-38

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start FY05 ullet
- Project end FY09
- 50% complete

Budget

- \$125k FY05 •
- FY06 \$156k •
- FY07 \$276k
- FY08(req.) \$287k

Barriers addressed

- Characterization of structures and hydrogen bonding in new storage materials
- Lack of phase diagram data on • potential new storage materials

Partners

MHCoE -Sandia, JPL, HRL, • GE, Caltech, Hawaii, Stanford, Nevada-Reno, Illinois, Carnegie Mellon, Pittsburgh, Utah, ORNL, BNL, SRNL, Internatix

NIST has provided over 420 instrument days to date and 2 FTE's/year for the HSCoE and MHCoE combined.

Overall: Support the development of hydrogen storage materials by providing timely, comprehensive characterization of Centerdeveloped materials and storage systems using state-of-the-art neutron methods and Calphad. Help <u>speed the development and</u> optimization of storage materials that can meet the 2010 DOE system target of 6 wt% and 45 g/L capacities.

- Characterize structures, compositions, and absorption site interaction potentials for hydrogen in candidate materials .
- Provide Calphad calculations of phase relationships of potentially promising hydrides.

Neutron methods

- determine elemental compositions of materials (non-destructive prompt-gamma activation analysis of H stoichiometries)
- determine location of H and crystal structures of materials (neutron diffraction superior to XRD for "seeing" light H and D)
- determine bonding of absorbed H (unlike IR and Raman, neutron vibrational spectroscopy "sees" all H vibrations for straightforward comparison with first-principles calculations)
- elucidate H diffusion mechanisms (faster dynamics timescale of neutron quasielastic scattering complements NMR; transport mechanisms gleaned from momentum transfer dependence)

Calphad methods

- develop a thermodynamic database from the available literature and first-principles calculations
- incorporate database into an overall temperature-pressurecomposition framework for multicomponent metal-hydrogen systems.

Structure Identification of Li₄Ge₂D and Li₄Si₂D

WETAL EXCELLENCE **Technical Accomplishment NIST**

Hydrogen Bonding Potentials in Li_4Ge_2H and Li_4Si_2H

 \bullet Measured neutron vibrational spectra for Li_4Ge_2H and Li_4Si_2H

 Characterized the phonon modes with first-principles phonon calculations

 Assignments of the phonon modes are consistent with NPD-observed Li-H bond lengths and the corresponding bond strength.

	Ge	Si
H-Li1:	2.091Å	2.087Å
H-Li2:	2.007Å	2.016Å
H-Li3:	1.939Å	1.881 <i>Å</i>

Destabilization of the $2CaH_2$ / Si system

$$2CaH_2 + Si \rightarrow Ca_2Si + 2H_2$$

Amorphous hydride phase

Hydrogen Induced Amorphization 10 Crystalline Ca₂Si (C37 structure) H₂ Pressure (MPa) Si Ca Amorphous Hydride 0.1 523K 473K Ca 0.5 2.0 0.0 1.5 2.5 1.0 Hydrogen wt.%

NPD, NVS, and Isotherm Results

- Ca_2Si readily absorbs H_2 at P < 1 atm.
- Quite rapid absorption kinetics (few min)
- No obvious pressure plateau
- Formation of amorphous hydride upon hydrogenation

Easy H₂ absorption compared to hard-to-hydride Mg₂Si at 200-300°C. "Amorphization" could be a way to accelerate the hydrogenation kinetics. 7 Chem. Mater. 19, 329, (2007)

Destabilization of the CaH_2 / MgH_2 / Si system

•Add MgH₂ (higher H₂ storage capacity); possibly improve slow Mg₂Si kinetics •Single-phase solid solution $Ca_{2-x}Mg_xSn$ observed in (1-x) Ca_2Sn -(x)Mg₂Sn system

Hydrogenation Properties of Ca_{2-x}Mg_xSi

- CaMgSi hardly absorbs H_2 under 0-70 atm at 200-300°C.
- Hydrogenation behavior of (1-x)Ca₂Si-xCaMgSi compositions is dominated by Ca₂Si.

Quaternary System: Na-Mg-Si-H

NaH + MgH₂ \rightarrow NaMgH₃ (350°C, 50bar H₂)

Reversible hydrogenation/dehydrogenation NaMgH₃ \leftrightarrow Na + Mg + 3/H₂ (350°C)

- MgH₂/Si system is hard to hydride
- NaH/Si system reversibly absorbs H₂
- NaH/MgH₂ forms a NaMgH₃ phase

So, we tried MgH₂/NaH/Si system

<u>Desorption:</u> 350°C evac. NaH + 2MgH₂ +2Si → Mg₂Si + NaSi

<u>Hydrogenation</u>: 350°C 50 atm NaSi + Mg₂Si +H₂ → (1-x)Mg₂Si + (1-x)NaH +Si+ xNaMgH₃

 Mg_2Si can partially absorb H_2 through the formation of NaMgH₃ 10

Spectroscopic Verification of $Ca(BH_4)_2$ Synthesis

Ca(BH₄)₂ Crystal Structure

Ca(BH₄)₂ Neutron Vibrational Spectrum

For $Ca(BH_4)_2$ synthesized at Sandia, the neutron vibrational spectrum is in agreement with first-principles phonon calculations based on the published ₁₁ $Ca(BH_4)_2$ structure.

WETAL EXCELLENCE **Technical Accomplishment NIST**

Destabilization of $LiBH_4$ with ScH_2 and CaH_2

• 2LiBH₄/ScH₂

Isotherm proposed: $2\text{LiBH}_4 + \text{ScH}_2 \rightarrow \text{ScB}_2 + 2\text{LiH} + 4\text{H}_2^{\uparrow}$ (8.9 wt%)

- Moderate desorption (~6 h to complete)
- but: 1. dehydrogenation only above 380°C
 2. no noticeable absorption observed during the rehydrogenation step
- 6LiBH₄/CaH₂

Isotherm proposed: $6LiBH_4 + CaH_2 \rightarrow CaB_6 + 6LiH + 10H_2^{\uparrow} (11.7 \text{ wt})$

- Moderate desorption (~2-3 h to complete)
- \cdot Complete rehydrogenation can be achieved at 380°C / 50 bar $\rm H_2$
- but: 1. dehydrogenation only above 380°C
 2. relatively slow hydrogenation kinetics (1 day to complete)

Subsequent results from other partners suggest that the dehydrogenation of the borates leads to elemental boron, not borides. 12

Calphad Computations

- Developing Calphad database for H-Li-Mg-Ca-B-Si with thermodynamic descriptions of the constituent subsystems
 - 15 binary total: 11 full descriptions available, 3 provisional in development, 1 under development
 - 20 ternary total: 2 full descriptions available,1 partial description available
- Challenge: lack of available experimental data
 - Incorporate data from ab initio calculations by MHCoE partners

Results: Quaternary System: Mg-Li-B-H

>> 2 LiBH₄ + MgH₂ is the most promising composition with a large amount of available hydrogen (11.5 %) at the lowest reaction temperature (188 °C).

We are currently in the process of expanding to include N in the 13 overall database as well as to investigate Na-K-B-H phases.

Future Work

Remainder of FY 2007:

- Scale up for higher hydrogenation pressure capability (<1000 atm) and use to investigate new ternary and quaternary systems via neutron methods.
- Continue thin-film characterizations using neutron reflectometry.
- Continue efforts to synthesize ¹¹B labelled hydrogen-storage materials.
- Complete thermodynamic assessments for systems with provisional descriptions (Li-B intermediate phases).
- Include descriptions for ternary and quaternary hydrides as data become available.
- Identify systems with MHCoE partners for future neutron scattering studies and Calphad database development.

FY 2008:

- Perform neutron scattering characterizations of new materials in conjunction with the needs of the other partners, emphasizing materials synthesized at high pressures.
- Continue to expand Calphad database (evaluate literature for data, identify data needs and systems with MHCoE partners for future database development).
- Initiate feasibility studies of unique neutron imaging of H distribution and transport in storage beds for candidate materials.

Summary

Neutron methods and Calphad computations provided crucial, non-destructive characterization and predictive tools for the Metal-Hydride Center of Excellence.

- Combined neutron and first-principles studies reveal novel ternary structures and H bonding for hydrided Li and Ca alloyed with Si (Ge). Nonetheless, the formation of these structures decreases the maximum H uptake expected for these destabilized materials. Also the H desorption temperature is still too high for practical applications.
- Hydrogen-induced amorphization (HIA) observed for Ca₂Si suggests a possible pathway for developing new hydride materials with improved absorption kinetics and warrants further examination.
- Attempts to make Mg₂Si more hydridable by alloying with Ca₂Si or NaSi were only partially successful. Although the CaMgSi alloy that routinely formed using Ca₂Si could not be hydrided under normal conditions, some of the Mg₂Si hydrided when NaSi was present to form NaMgH₂. This suggests that proper doping of Mg₂Si with additional elements can render the Mg component more reactive.
- Neutron methods confirm the formation of $Ca(BH_4)_2$ from the high-pressure hydrogenation of CaH_2 and CaB_6 . These high-pressure syntheses may provide an alternate means of incorporating neutron-transparent ¹¹B into various borohydrides to enable better neutron measurements.
- Hydrogen cycling measurements of promising destabilizing combinations of LiBH₄ with ScH₂ and CaH₂ indicate that they may be hindered by the formation of elemental boron during dehydrogenation.
- A Calphad database for H-Li-Mg-Ca-B-Si-N with thermodynamic descriptions of the constituent subsystems is being developed from binary data from the literature and ab initio calculations. So far, 2 LiBH₄ + MgH₂ is the most promising composition with respect to hydrogen availability and reaction temperature. 15