

Hydrogen Fuel Cell Vehicle & Infrastructure Demonstration Program Review

Ford Motor Company Research & Advanced Engineering May 17, 2007

Cord R&A - Research & Advanced Engineering Project ID #TV2 This presentation does not contain any proprietary or confidential information

1

 Froject start:	 Barriers Addressed Vehicles Storage Hydrogen Refueling
Nov. 17, 2004 Project end:	Infrastructure Maintenance and Training
Jun. 2009 50 % complete	Facilities Codes & Standards
 Budget \$88 mil project DOE \$44 mil Ford \$44 mil FY06: \$7.2 mil FY07: \$6.1 mil 	 Partners BP America Ballard States of California & Florida City of Taylor, MI SMUD, Progress Energy & NextEnergy

Vehicle Project Objectives

To gain FCV operational data in differing climate conditions to direct and augment future design efforts

Since Last Review

- Continue Vehicle Operation
 Collect and report operational data
- Maintain fleet & survey customers
- •Design & build four Phase II concept vehicle

Infrastructure Project Objectives

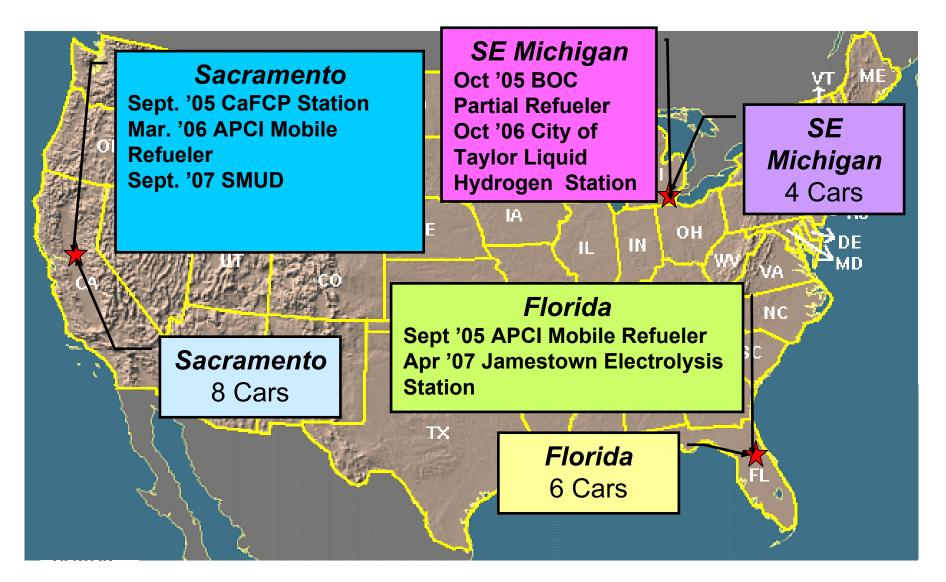
Previous Project Objective

- Provide safe, reliable user friendly hydrogen infrastructure
- Install technology to meet cost targets
- Establish an initial infrastructure network to fuel small fleets across a metropolitan area

Current Project Objectives

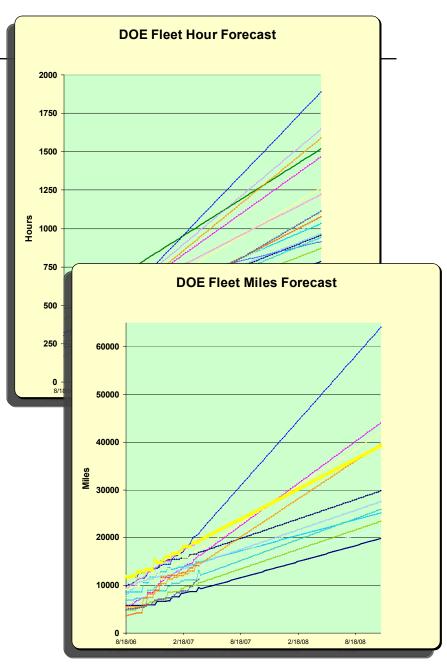
- Provide safe, reliable user friendly hydrogen infrastructure
- Install technology to meet cost targets
- Test a variety of hydrogen delivery options

Vehicle Approach


Two demonstration components

- Phase 1: developed technology installed in contemporary (Focus) vehicles for real world use
- Phase 2: controlled in-house demonstration of extended range, durability, hydrogen pressure and operating temperature
- Fleet vehicles in three differing geographic/climatic regions
- Automated data collection methodologies for effective data analysis

2007 Phase 1 Deployments



Technical Accomplishments/

Progress/Results

- Accumulated 274,000 miles vs. 324,000 mile target to date
- Operated 9593 hours vs. 13590 hr target to date and 27000 hr end of program target
- Projected end of program vehicle miles/hours
 - 820 to 1525 Hour
 - 20000 to 64000 miles

Phase II Ford Controlled Engineering Prototypes

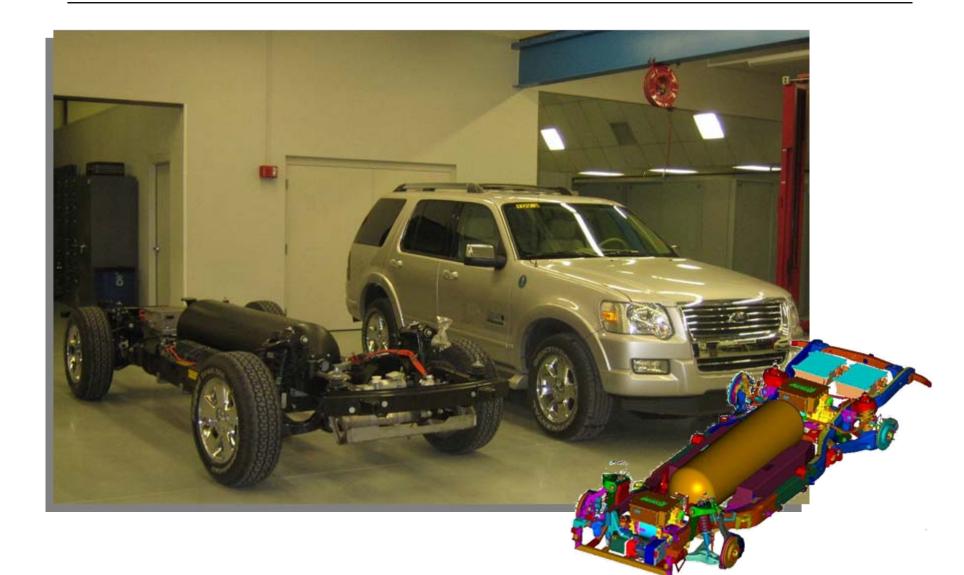
Vehicle Attributes	H2 Storage Upgrade	Robustness Demonstrator	Designed Around Hydrogen Demonstrator	Flexible Series H2 Hybrid
Fuel Cell	Gen 1	Gen 2	Gen 2	APU
Generation		(Stage 1)	(Stage 2)	
Number of Vehicles	1	1	5	2
Timing	2 Q `07	1Q ′06	4Q ′06	4Q ′06
Range (miles)	240	200	>300	300
Hydrogen Storage (bar)	700	350	350	350
Unassisted Cold Start	2 °C	2 °C	< 0 °C	-15 °C
Assisted Cold Start	2 °C	2 °C	-15 °C	-25 °C
Fuel Efficiency (mpg) (*normalized to Focus)	50	50	50	40-70
In bench Test Complete Operating R&A - Research & Advanced Engineering 8				

Hydrogen Storage Upgrade

				700 bar Project
97.	1	Target Vehicle	vehicle	Focus - TDV9
	2	Approx. Cylinder Size	mm	573 x 972
	3	Useable Storage Capacity	Kg	5
	4	Driving Range	miles	250 @ 50 mpg
	5	Total System Weight	Kg	132
	6	Cylinder Development Status	Status/Timing	Certification Done
	7	Valve Development Status	Status/Timing	Certification Done
	8	PRD Development Status	Status/Timing	Certification Done
	9	Bonfire Test Status	Status/Timing	Complete
	10	CR System Assembly Status	Status/Timing	Complete
	11	CR System Testing Status	Status/Timing	Underway

Robustness Demonstrator

- Demonstrated improved stack lifetime and reliability
- Completed 30,000 mile dynamometer endurance test
- No stack performance
 or durability issues
 - Stack polarization data shows no appreciable signs of deterioration


Robustness Demonstrator Accomplishments

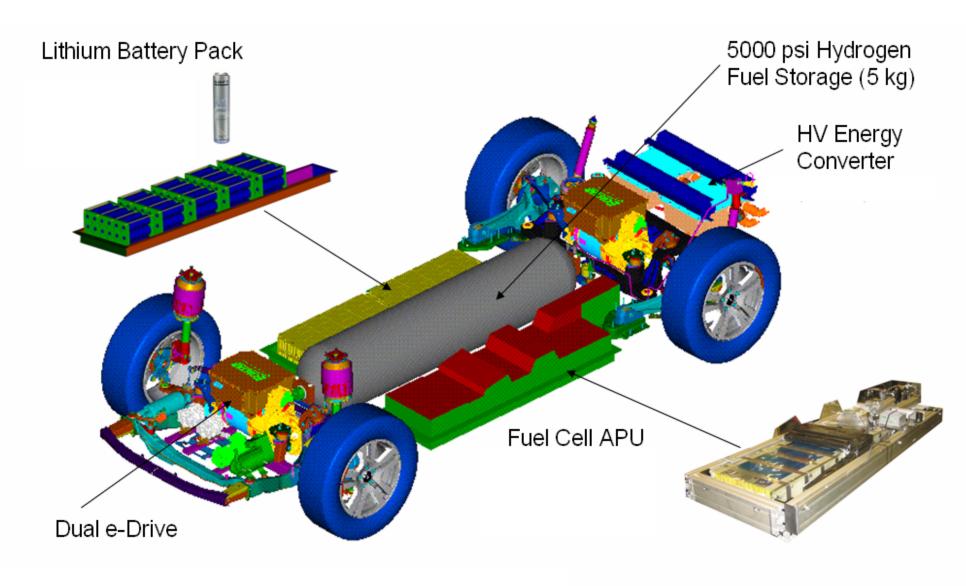
- Developed an advanced humidity sensor
- Developed an advanced gas conditioner
- Characterized FCS interface (RH, DP, P, T)
- Improved Humidification of Anode

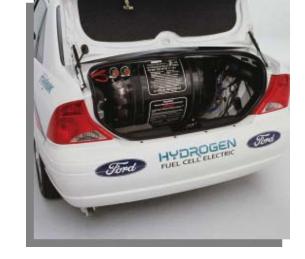
- Applied next gen H2 pump
- Completed a 30,000 mile durability test

Designed Around Hydrogen Accomplishments

- Hydrogen Storage Architecture for 350 miles range
- Underhood Fuel Cell Stack
- NVH better than base ICE
- 17,000+ miles of real world road use in 2006

- 1556 miles distance record for 24 hr run at DDC
- Displayed at 2006 LA Auto Show





Lessons Learned- Vehicles

- Hydrogen Fuel storage packaging continues to be a significant challenge
- Vehicle architecture can be designed to accommodate consumer demands, but not without significant compromise & cost
- A 98%+ uptime is not sufficient to meet commercial targets/ standards
- Economic viability remains uncertain

Infrastructure Approach

THEN -2006

NOW-2007

Phase One

 Install Mobile Refuelers
 Install H2 Delivered
 Stations

 Phase Two
 Install On-site H2 Production
 Install 700 bar (if feasible)

Station Locations

Orlando, Florida
Sacramento, CA
Taylor, MI
Dearborn, MI (TBD)

California	Open	Planned	Decommiss ion
Sacramento Mobile Refueler	Oct 2005		Dec 2007
SMUD		Sep 2007	Sept 2009
Florida			
Jamestown Mobile Refueler	Sep 2005		July 2007
Jamestown Stationary Site w/electrolyzer	Apr 2007		Sept 2009
Michigan			
City of Taylor Temporary Station	Oct 2005		Jan 2007
City of Taylor Stationary Site (Liquid delivery)	Oct 2006		Sept 2009
Dearborn (700 bar) (liquid delivery)		TBD	Sept 2009

City of Taylor Station Dept. of Public Works Opened Oct. 18, 2006

Technology	Liquid Delivered
Service Pressure	6600 psig
Total Capacity	2149 kgs
Fill Types	Wireless RF Wired Comm Non-Comm
Safety Training	40 emergency responders/ 25 fleet operators
Data Collection	Obtaining fueling data from vehicles

Jamestown Station Oviedo, Florida Progress Energy Site Open<u>ed April 2007</u>

Technology	Electrolysis
Service Pressure	6600 psig
Total Capacity	24 kgs/day
Fill Types	Wireless RF Wired Comm Non-Comm
Safety Training	90 emergency responders/ 60 fleet operators
Data Collection	On-site electronic data collection

BP/SMUD/DOE Renewable Energy Station Sacramento, California Planne<u>d Station Opening Sept 07</u>

TechnicalAccomplishments

- Completed Site Design
- Completed Legal Agreements
- Completed 6 Community
 Outreach meetings

- Completed CEQA
 process
- Completed HAZID Review
- Initiated permitting process

Safety Implementation

Hydrogen for Transport is committed to no accidents, no harm to people, no damage to the environment

Project Management

- ✓ Managerial Gate Approvals
- ✓ Management of Change
- ✓ Pre-Construction Safety Induction for Contractors and Suppliers (Injury and Incident Free training)
- ✓ Advanced Safety Audits
- ✓ Integrity Management Standard

- ✓ NFPA 52
- ✓ SAE J2600
- ✓SAE J2601(planned)
 ✓ASME B31.3

R&A - Research & Advanced Engineering

Safety Implementation

Hydrogen for Transport is committed to no accidents, no harm to people, no damage to the environment

Collaborative system safety assessments, reviews and plans

- ✓ HAZID / QRA
 ✓ HAZOP
 - pHSSEr approach
 - BP-Global Alliance safety training for contractor and supplier
- Emergency Response Plan
- H2 Safety Training
 - ✓ Contractors
 - ✓ Fleet operators
 - ✓ Station operators
 - ✓ Emergency Responders

• Station Loading/Vehicle Volumes

- Difficult to justify building several multi-million dollar stations to fuel four or less vehicles a couple of times per week (load too small).
- Need substantial numbers of cars per station (DOE and industry should work together to guarantee substantial station loading)

Limited Supply Base

- Results in high cost of equipment (even though we are coming down the learning curve).
- Small suppliers can add unnecessary complexity and significant cost to projects due to their financial challenges. Need a better way to vet privately owned small companies.

Permitting

- Footprint of distributed production stations may be too large for most urban area retail sites
- Permitting hydrogen at retail stations is challenging for a variety of reasons including unrelated local issues with existing retail stations

Developing Codes & Standards

- New safety codes that emerged mid-stream of a project added cost and time delays (for example NFPA 52 flame and gas detection requirement)
- New ASTM test methods must be developed to ensure hydrogen quality guidelines are met (for example, SAE J2719 sulphur and CO levels)

Future Work: 2007 Work Plan

Upcoming Events:

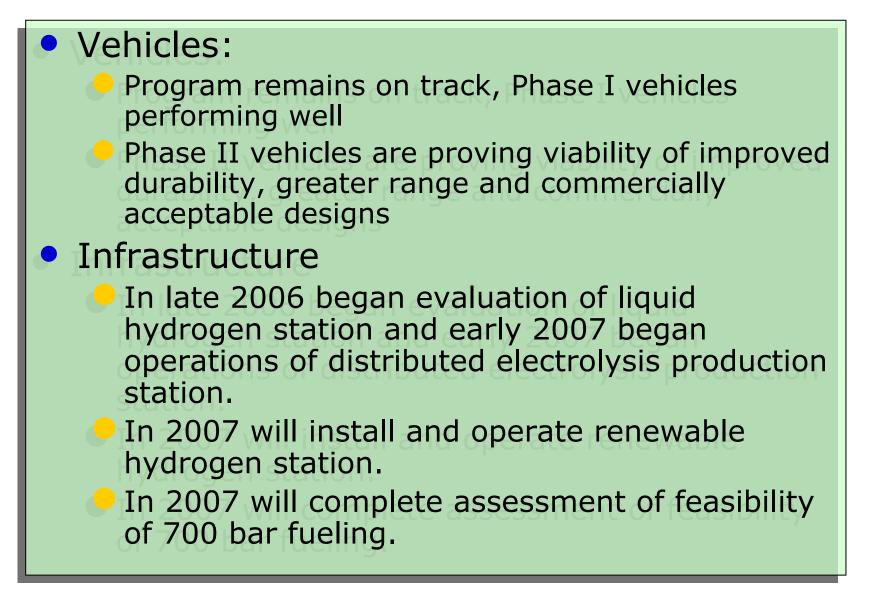
Continue Phase I vehicle operation

Operate Orlando and City of Taylor Stations

🚧 Evaluate 700 Bar Vehicle Performance

Begin third Phase II Designed Around Hydrogen Concept Vehicle

Install SMUD Renewable Hydrogen Station


700 bar station to support Phase II- TBD

Research and Advanced Engineering

