Power Parks System Simulation

Andy Lutz, Adam Simpson*, Emma Stewart** Combustion Research Facility Sandia National Laboratories Livermore, CA

*Stanford University **University of Strathclyde, Scotland

TVP-7 Hydrogen Program Annual Review May 17, 2007

This presentation does not contain any proprietary or confidential information.

Overview

- Timeline
 - Started: FY03
 - Finish: FY07
 - Complete: 85%

- Budget
 - FY 2006: 150 K\$

Barriers addressed

- Performance for stationary H₂ systems
- MYPP cost and efficiency targets for distributed H₂ production
- Reforming natural gas:
 - Cost: 2.50 \$/kg (2010), 2 \$/kg (2015)
 - Efficiency: 72% (2010), 75% (2015)
- Distributed electrolysis:
 - Cost: 3.70 \$/kg (2012), <3 \$/kg (2017)
 - Cost: 3.70 \$/kg (2012), <3 \$/kg (2017)
- Biomass Gasification/Pyrolysis
 - Cost: 1.60 \$/kg (2012), 1.10 \$/kg (2017)
 - Efficiency: 43 % (2012), 60 % (2017)

Overview (con't)

Partners

- Hawaii Natural Energy Institute (HNEI)
 - Richard Rocheleau, Scott Turn, Mitch Ewan
- Arizona Public Service (APS)
 - Ray Hobbs
- DTE Energy
 - Rob Bacyinski
 - Rob Fletcher, Elliott Schmitt (Lawrence Tech.)

Stanford's Global Climate & Energy Project

- Adam Simpson, Chris Edwards
- University of Strathclyde
 - Emma Stewart, Andrew Cruden

DTE Energy[®]

Objectives and Relevance to H₂ Program

Objectives

- Develop a flexible system model to simulate distributed power generation in energy systems that use H₂ as an energy carrier
 - Power parks combine H2 and electricity production co-located with a load
- Analyze the efficiency and cost of H₂ and electricity at demonstration systems
- Support IEA Annex 18 modeling task
 - Evaluate, guide and assist in the development of hydrogen demonstration systems
 - Analyze the "Idrogeno Dal Sole" (Hydrogen from the Sun) demonstration

Relevance to the Multi-year Program Plan:

- Technical Analyses
 - Analyze H_2 and electricity as energy carriers and evaluate system synergies

Approach

Combine engineering and economic analysis

- Assemble engineering model as system of components
- Component models based on fundamental physics and chemistry
- Economic analysis modules linked to components
- Validate simulations with data from DOE demonstration projects
 - Conducted site visits to establish working relationships with engineers
 - Supported graduate students to help with data collection & modeling

Software Design

- Create a library of Simulink modules for H₂-specific components
- Library components can be quickly re-configured for new systems
- Generic components can be customized using specific data
- GUI developed for a sample system (Sandia internal funds)

Library of Simulink modules

- Engineering component models:
 - Separation: model work by minimum work, efficiency, & effectiveness
 - Reformers: steam methane and autothermal (partial oxidation)
 - Electrolyzer: balances mass & energy, including phase change
 - PEM Fuel cell: uses experimental data for polarization curve
 - Compressor: multi-stage with intercooling, isentropic efficiency
 - *High-pressure storage vessel*: real-gas equation-of-state
 - *Photovoltaic solar collector*: solar incidence with location & time of day
 - Wind turbine: model power map & wind shear using hourly wind data
 - Chiller: model pump work and refrigerant cycle with coefficient-ofperformance
- Economic analysis modules consistent with H2A
 - Levelized-cost approach: interest, taxes, depreciation, capacity factor

Simulations of DOE demonstration systems

- Exergy (2nd law) analysis of steam-methane reforming
 - Revisited analysis of City of Las Vegas refueling station
- Hawaii Natural Energy Institute
 - Gasification of biomass to produce H₂
 - Electrolyzer to produce compressed H₂ for transportation on Big Island using geothermal electricity
- IEA Task 18 Integrated H₂ systems analysis
 - Simulation of Italian H₂ House
- DTE Energy Hydrogen Technology Park
 - Electrolyzer feeds stationary PEMFC's and vehicle refueling
- Arizona Public Service (APS) refueling facility
 - PEM electrolyzer feeds PEMFC, ICE gen-sets & vehicle refueling

Exergy analysis of Steam Methane Reforming

Model includes heat integration

Exergetic efficiency definition:

$$\eta_{ex} = \frac{X_{H_2}}{X_{CH_4} + W_{comp} + W_{pump}} = 63.3\%$$

$$X = U + P_o V - T_o S - \sum_k N_k \mu_{ko} - \sum_k \left[\sum_i \mu_{ko} \binom{v_{ki}}{v_i} \right] N_k$$

Exergy analysis locates and compares the inefficiencies in the SMR system

- Break down of unused exergy
 - "Unused" = exhaust + destroyed
- Majority of exergy destruction occurs in reformer
 - Inherent irreversibilities: combustion, heat transfer, mixing
- Second largest destroyer of exergy is the water-to-steam heat exchanger
- Exergy left in the exhaust is significant, but not dominant
- 1st-law analysis alone would suggest exhaust is the main cause of inefficiency

Equilibrium model shows that SMR system efficiency is a strong function of temperature

For T < 975 K : Increasing T shifts equilibrium toward more H_2 For T > 975 K : Additional methane needed to supply heat

Model shows benefit of excess steam

For 2 < (S/C) < 3.3: Excess steam shifts equilibrium toward H₂ For (S/C) > 3.3: Additional steam requires burning more methane

Analysis of "Idrogeno Dal Sole" demonstration

H2 solar house design

- Brescia, Italy
- 6.7kW High pressure alkaline electrolyser
 - Produces 1NM³/hr H₂ at 200 bar
- 5 kW PEM fuel cell
- 3000 Ah battery
- 30 Nm³ Hydrogen stored in metal hydride
- 120 Nm³ Hydrogen in storage cylinders
- 11 kW peak power available from photo-voltaic panels

Italian H2 house control system fills metal hydride and high-pressure storage

- Control System
 - Load management
 - Hydrogen storage
 - Event monitoring and control
- Hydrogen Flow Control System
 - A goal is to demonstrate metal hydride (MH) storage
- Analysis of system dynamics

Italian H2 house electrical load control

Load Control System

- Modeled using "if-else" strategy
- Future development to include system dynamics with detailed controller – closed loop PI
- Electrical load distribution monitoring
- Component status monitoring and alarm management
- Real time analysis of data from components
- Remote control operation and visualization

Preliminary economic analysis estimates cost of H2 and electricity from the Italian house

- Estimated H2 cost
 - Electrolyzer capital cost by scaling with production rate to 0.6 power
 - Use project cost data when available
 - O & M 2% of capital cost
 - Electricity cost estimated using off-peak power at 0.025 \$/kWh
- Estimated electricity cost from fuel cell
 - 0.76 \$/kWh based on off-peak power
 - Future study will include solar PV costs

CONTRIBUTION	COH (\$/kg-H ₂)
Capital	7.702
Feedstock	2.458
O&M	1.118
TOTAL	11.28

- Electrolyzer efficiency ~54%
 - Future study will include standby operation when solar power is insufficient

HNEI is investigating production of H₂ on Big Island by electrolysis using curtailed power

- Geothermal power from Puna Plant on east side of island
 - Plant willing to sell curtailed power (not purchased by utility) at 2 ¢/kWh
- Utility charge for transmission across island
 - Add estimated 2 to 5 ¢/kWh based on line costs
- Build H2 power park on west side near demand
 - Electrolyzer (400 \$/kW_e, 60% efficient), storage, compression
 - Generate electricity by either:
 - Engine genset at 35% efficiency, 50 \$/kW_e
 - SOFC at 50% efficiency, 800 \$/kW_e

Transmission	H2 cost	Genset elect.	SOFC elect.
2 ¢/kWh	3.28 \$/kg	29 ¢/kWh	24 ¢/kWh
5 ¢/kWh	4.94 \$/kg	42 ¢/kWh	34 ¢/kWh

HNEI is investigating H2 production by biomass gasification

- Compare model to experiments by Turn et al (Hawaii)
- Chemical equilibrium captures dependence of H₂ concentration on equivalence and steam/biomass ratios

Temperature effect on biomass gasification

- Chemical equilibrium does not capture temperature dependence
 - Predicts increasing H2 only at lower T (500-650 C)
 - Predicts decreasing H2 with T above 700 C
- Equilibrium suggests methane should only exist at lower T (< 600 C)
- Kinetics affect gas composition and char
 - Experiments observed char and tar, but not quantified

Analysis of fertilizer co-production from peanut shell pyrolysis char with integrated ammonia synthesis

- Process being developed by Eprida / NREL / U. Georgia
- Process efficiencies

Production	H ₂ Yield	Efficiency
H ₂ alone	6 %	22 %
Ammonia	4 %	29 %

- Economic analysis assumptions
 - Biomass feed = 40 \$/ton
 - Co-product fertilizer price
 - 1500 \$/ton on ammonia basis
 - Scaled from 400 \$/ton (urea)
 - Finance parameters from H2A
 - Capital costs are largest uncertainty

Contribution	H ₂ Cost
Capital, O&M	4.85 \$/kg
Biomass feed	0.94
Electricity	0.63
Co-product	-3.27
Net	3.15 \$/kg

Biomass pyrolysis simulated by equilibrium

- Low-temperature pyrolysis produces char
 - Slow-release fertilizer to be sold as co-product
- Compare model to NREL exp'ts
 - Nominal conditions
 - Pyrolysis T = 823 K
 - Steam/carbon = 3.9
 - Chemical equilibrium estimates char fraction and H₂ yield
 - H₂ yield = 6.1% (of biomass)
 - Data: 5.6% < H₂ yield < 6.7%
 - Exothermic for T < 900 K</p>
- Trade-off between H₂ and char production versus temperature is consistent with experiments

Future Work

Support IEA Task 18 Analysis effort

- Support Emma Stewart (Strathclyde) in US/UK exchange program
- Continue analysis of Italian H₂ Solar House
- Compare operation data to simulations
- Analysis of biomass gasification
 - Analyze data from gasification demonstration at HNEI
 - Provide economic analysis of H₂ from gasification
- Follow-up analysis of DOE power parks
 - DTE Energy:
 - Evaluate new electrolyzer expected in summer '07
 - Revisit economics of H₂ production over system life
 - Apply exergy analysis to electrolysis model for comparison to SMR

Summary

Exergy analysis of SMR identifies losses of useful energy

- Major losses (48%) are heat transfer and reaction in reformer
- Exhaust is only 18% of unused available energy
- Maximum practical efficiency is 68%
- Analysis of electrolysis at HNEI
 - H2 from curtailed geothermal power costs 3 to 5 \$/kg
 - Short of MYPP target, but competitive with gasoline at low end
 - Electricity from fuel cells can be competitive
 - For isolated cases like Big Island where peak electricity is 0.32 \$/kWh
- Biomass pyrolysis: co-product helps, but H2 still > 3 \$/kg
 - H2 yield (6%) and process efficiency (29%) are relatively low

