U.S. Department of Energy Hydrogen Program

Producing Hydrogen from Nuclear Energy

Thomas J. O'Connor Nuclear Energy

2008 DOE Hydrogen Program Merit Review and Peer Evaluation Meeting

June 9, 2008

Hydrogen Manufacturing Using Clean Nuclear Energy

Nuclear power provides a viable source of energy for hydrogen production via several pathways.

All of these methods split water into hydrogen and oxygen.

Nuclear Hydrogen Initiative

FOCUS: Hydrogen production technologies that are compatible with nuclear energy systems and do not produce greenhouse gases

OBJECTIVE: By 2019, operate a nuclear-compatible hydrogen production plant to produce hydrogen at a cost competitive with other alternative transportation fuels

Major Program Milestones

- FY 2007: Construction of laboratory-scale experiments
- FY 2011: Select hydrogen production technology to be coupled with the Next Generation Nuclear Plant (EPACT requirement)
- FY 2013: Operate pilot-scale hydrogen production experiments
- FY 2019: Demonstrate commercial-scale hydrogen production system for use with advanced nuclear reactors

NHI Budget

FY2009 Budget Request = \$16.6M

FY2008 Budget = \$9.9M

FY09 Emphasis

Operate laboratory-scale experiments:

- Continue testing of Sulfur-Iodine cycle
- Evaluate process improvements (membranes and improved catalysts)
- Design laboratory-scale experiment for Hybrid Sulfur cycle for construction in FY 2010.
- Continue High Temperature Electrolysis experiments begun in FY 2008
- Incorporate the results from the integrated laboratory scale experiments into the hydrogen production economic analysis model.

NHI R&D Approach

1. Thermochemical Cycles

- Process performance potential and technical issues
- Integrated lab scale experiments (S-I, hybrid S, approx. 5 -10 kW)
- Pilot scale experiment (approx 0.5 1 MW)

2. High Temperature Electrolysis

- Technology development single, multi-cell stack experiments
- Scaling experiments (approx.15 kW)
- Pilot scale experiment facility (approx. 200 kW)

Sulfur-Based Thermochemical Cycles for Hydrogen Production

Sulfur-Iodine Integrated Laboratory-Scale Experiment

(General Atomics, Sandia National Laboratory, Commissariat à l'Energie Atomique of France (CEA))

High Temperature Steam Electrolysis for Hydrogen Production

Planar Solid-Oxide Electrolysis Stack

High Temperature Electrolysis: from Button Cells to the Integrated Laboratory Scale Experiment

Button cell (2003) 3.2 cm²

10-cell stack (2004) 640 cm²

Integrated Laboratory Scale (operational 8-22-07) 720 cells, 3 modules (2008) 46,080 cm² (Idaho National Laboratory)

120-cell half-module (2006) 7,680 cm²

Then what ???

Progressive uses of hydrogen produced through nuclear energy

- Upgrading of heavy crude oils for the production of gasoline
- Upgrading of Athabasca Oil Sands for production of diesel and gasoline
- Fischer-Tropsch synthesis of diesel, jet fuel, and gasoline using CO from coal gasification
- Utilization of bulk-stored H2 and O2 for peak power generation
- Co-electrolysis of CO2 from biomass and steam to produce CO and H2 for synthetic, GHG-neutral, gasoline, diesel and jet fuels
- Nuclear production of H2 for use in fuel-cell-powered vehicles as well as stationary fuel cells.