U.S. Department of Energy Hydrogen Program

Hydrogen Storage

Sunita Satyapal

2008 DOE Hydrogen Program Merit Review and Peer Evaluation Meeting

June 9, 2008

Goal and Objectives

GOAL: On-board hydrogen storage for > 300 mile driving range across different vehicle platforms, WITHOUT COMPROMISING passenger/cargo space, performance (wt, vol, kinetics, safety, etc.) or cost

Develop on-board storage systems to meet DOE targets, including:

- Capacity
- Operating temperature range (-40 to +85°C)
- Hydrogen supply rate/refueling rate
 - $\circ~$ 0.02 g $\rm H_{2}$ per sec. per kW of power
 - \circ Refueling time <3 min. for 5 kg H₂
- System cost
- Fuel cost
- Safety, C&S, reliability, cycle life, efficiency, etc.

Challenges

- Vehicles are being designed by OEMs that can achieve > 300 miles
 - 350 or 700 bar
 - 1 to 4 tanks
 - Specified range from ~200 to > 350 miles
- But performance, space on-board and cost are still challenges for mass market penetration...
- Is there a low pressure alternative?

Strategy – Diverse, Balanced Portfolio

National Hydrogen Storage Project¹

1. Coordinated by DOE Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cells and Infrastructure Technologies

- 2. Basic science for hydrogen storage conducted through DOE Office of Science, Basic Energy Sciences
- 3. Coordinated with Delivery Program element

~40 Universities, ~20 Companies, ~15 Federal Laboratories

Hydrogen Storage Budget

FY 2009 REQUEST = \$59.2M FY 2008 APPROPRIATION = \$43.5M

FY2009 Emphasis

- Increase engineering in addition to materials R&D through Centers of Excellence and independent projects to enable system targets.
- Focus on kinetics, temperature, pressure, cycle life, spent fuel regeneration, etc. *in addition* to capacity
- Strengthen tank R&D to address NAS recommendations. Focus on cost reduction and advanced concepts. Also applicable to materials-based approaches.
- Continue close coordination with Basic Science

Material Capacity vs. Temperature

Material Capacity vs. Temperature

Material Capacity vs. Temperature

Material Capacity vs. Temperature

Current Status

No technology meets targets

10

Hydrogen Storage System Progress

System Gravimetric Capacity (in weight %)

- Projected system capacities based on modeling and material data.
- Subscale prototype developed for NaAlH₄
- Full scale prototype developed for cryocompressed tank

- Preliminary designs developed and improvements made
- But no technology meets targets
- Need to focus on volumetric capacities

Metal Hydride Down-Selects

More than 50 Metal Hydride Approaches Assessed

- ~ 50% discontinued
- ~ 50% show some promise

Examples of Approaches Discontinued:

- MgH₂/Si: not reversible X
- 2LiNH_2 + MgH₂ : wt. % limited X
- $Li_2Zn(BH_4)_4$: high diborane X

Examples of Approaches Continued:

- − LiBH₄/MgH₂ in aerogels \checkmark
- − LiMgN, Li $_3$ AlH $_6$ /3LiNH $_2$ ✓
- − A_xMn(BH₄)_y [A=Li, Na, K] ✓
- AIH_3 , and 22 other systems \checkmark

In fulfillment of materials down-select milestone

Materials Go/No-Go Decisions Made Within the Department of Energy Metal Hydride Center of Excellence (MHCoE)

In fulfillment of the end of Fiscal Year 2007 Project Milestone on Materials Down-selection

> Lennie Klebanoff, Director Sandia National Laboratories Livermore, CA 94551

September/October 2007

http://www1.eere.energy.gov/hydrogenandfuelcells/hydrogen_publications.html#h2_storage

Metal Hydride Center of Excellence

Accomplishments Metal Hydride Examples

- Developed theory tool and screened > 16 million compositions
- Identified > 40 single step reactions as promising so far (with > 6 wt% H₂ and 15 < ∆U₀ < 75 kJ/mol H₂)

Alapati, Johnson and Sholl, *J. Phys. Chem. C*, **112**, 5258 (2008)

Increased kinetics <u>60-fold</u> using LiBH₄ in aerogel

 $LiBH_4 \rightarrow LiH + B + 1.5H_2$

2008 Progress Chemical Hydrogen Storage Down-Selects

More than 60 Materials Assessed

- ~ 50% discontinued
- 30% show some promise but have issues
- 20% show some potential to meet targets

Examples of Approaches Discontinued:

- Hydrolysis of polyhedral boranes, & NaBH₄: inefficient spent fuel regen X
- Mg(OMe)₂/H₂O: >200C release T X

Examples of Approaches Continued:

- Exothermic release: e.g. Ammonia borane (AB), AB-scaffolds, AB - ionic liquid mixtures, liquid amine boranes
- New materials, thermoneutral or coupled release:
 E.g., Metal-boron-nitrogen materials ✓

Chemical Hydrogen Storage Center of Excellence

Accomplishments Ammonia borane

$NH_3BH_3 \rightarrow BNH_x + 3H_2$ 19.4 wt.%, 160 g/L (theoretical material capacity)

- Increased H₂ release rates by 4X compared to 2007. Can meet DOE rate targets
- Improved H₂ capacity by > 50% since 2006

 Improved regeneration efficiencies by 22-35%

- Increased efficiency via design of optimum digesting agent and reduction strategy
- Improved yields for all steps in the 3 regen schemes

LANL, PNNL, U. AL, U.C.-Davis, UPenn

Hydrogen Sorption Examples

- DOE work on "spillover" catalyzed worldwide R&D
- Led to 8 wt.% at room temp
- Tailored binding energies
 ✓ PCN-12 △H_i ~ 12 kJ/mol
 ✓ MOF-74 ~ 8 kJ/mol
 - ✓ MOF-74 ~ 8 kJ/mol
 - ✓ Activated C-fiber ~10 kJ/mol

(compared to <6 kJ/mol)

- Increased H₂ uptake by 75% using open metal sites
- Modeling of sorbents and spillover identified thermodynamically favorable approaches

National Center of Scientific Research "Demokritos" (NESSHY, EC) and SwRI (DOE)

Hydrogen Sorption Center of Excellence, SwRI and UCLA

Progress Tanks

- Demonstrated 103 to 190 mile range across 92 vehicles (Gen 1) through Technology Validation activity
- Demonstrated ~ 2X increase in dormancy using cryocompressed tanks (LLNL)
- Assessed high P tank cost (TIAX)
 - High volume cost projections:
 - ~ \$27/kWh (700 bar)
 - Assessed cryo-compressed tank cost & sensitivity analysis

System Gravimetric Capacity 350 bar: 2.8-3.8 wt.% 700 bar: 2.5-4.4 wt%

System Volumetric Capacity 350 bar: 17-18 g/L 700 bar: 18-25 g/L

Materials Properties, Testing & Analyses

- Best Practices developed for hydrogen storage equilibrium & kinetics measurements
 - Draft online for public comment

K. Gross, H2 Technology Solutions/HyEnergy, LLC/NREL

Systems Analysis

- Preliminary well to tank efficiency analysis conducted
- System capacity and cost analysis conducted for multiple approaches

Argonne, TIAX

• Reactivity of hydrogen storage materials assessed under various exposures – An IPHE Collaboration

Savannah River, Sandia, UTRC (US) & Japan, Germany, Canada

See: http://www1.eere.energy.gov/hydrogenandfuelcells/hydrogen_publications.html#h2_storage

Key Hydrogen Storage Milestones & Future Plans

Hydrogen Storage Collaborations

Applied R&D under the President's Hydrogen Fuel and Advanced Energy Initiatives is coordinated among national and international organizations

For More Information

Hydrogen Storage Team

Sunita Satyapal, Team Leader Overall Storage/ FreedomCAR Tech Team/International 202-586-2336 sunita.satyapal@ee.doe.gov

Grace Ordaz

202-586-8350

Gary Sandrock On Assignment to DOE

Oak Ridge Nat'l Lab

202-586-8707

garv.sandrock@ee.doe.gov

Monterey Gardiner Tanks, Sorbents, Delivery 202-586-1758 monterey.gardiner@ee.doe.gov

Carole Read Chemical Hydrides. Chemical Hydrogen Sorbents & Carbon. Hydrogen Sorption Center of Storage Center of Excellence Excellence/FreedomCAR Tech Team 202-586-3152 grace.ordaz@ee.doe.gov carole.read@ee.doe.gov

> Ned Stetson Metal Hydrides. Metal Hydride Center of Excellence, SC&S interface 202-586-9995 ned.stetson@ee.doe.gov

Field Office Project Officers:

Jesse Adams James Alkire Paul Bakke

Support: Kristin Deason (Sentech)

Applied R&D Hydrogen Storage "Grand Challenge" Partners Diverse Portfolio with University, Industry & National Labs

Centers of Excellence		Independent Projects	
Metal Hydride Center National Laboratory: Sandia-Livermore Industrial partners: General Electric HRL Laboratories Intematix Corp. Universities: CalTech Stanford Pitt / GATech Hawai'i / UNB Illinois Ohio State Nevada-Reno Utah Federal Lab Partners: Brookhaven JPL, NIST Oak Ridge Savannah River	Hydrogen Sorption CenterNational Laboratory: NRELNRELIndustrial partners: Air Products & ChemicalsUniversities: CalTech Duke Miami UnivOH Michigan North Carolina Penn State Rice Univ. of ChicagoFederal Lab Partners: Argonne Lawrence Livermore NIST Oak Ridge	Chemical Hydrogen Storage Center National Laboratories: Los Alamos Pacific Northwest Industrial partners: Intematix Corp. Millennium Cell Rohm & Haas US Borax Universities: Northern Arizona Penn State Alabama California-Davis Univ. of Missouri Pennsylvania Washington Federal Lab Partners: INL	Advanced Metal Hydrides UOP Univ. of Connecticut Delaware State Sorbent/Carbon-based Materials UCLA State University of New York Gas Technology Institute UPenn & Drexel Univ. Chemical Hydrogen Storage Air Products & Chemicals RTI Millennium Cell Safe Hydrogen LLC Other New Materials & Concepts Alfred University Michigan Technological University UC-Berkeley/LBL UC-Santa Barbara Univ. of Arkansas Purdue UNLV Tanks, Safety, Analysis & Testing Lawrence Livermore Nat'l Lab
Occurring the Decis Ociganse (Office of Ociganse DEC)			Quantum

Coordination with: Basic Science (Office of Science, BES)

MIT, U.WA, U. Penn., CO School of Mines, Georgia Tech, Louisiana Tech, U.Georgia, Missouri-Rolla, Tulane, Southern Illinois, Rutgers, Stonybrook, UC Davis, UC Santa Barbara, Sth Florida, Missouri-Columbia; Labs: Ames, BNL, LBNL, ORNL, PNNL, SRNL

Argonne Nat'l Lab, TIAX LLC

Savannah River Nat'l Lab

SwRI, UTRC, Sandia Nat'l Lab