

Modeling the Transition to Hydrogen

David L. Greene

Paul N. Leiby

Oak Ridge National Laboratory

June 10, 2008

AN01

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: October, 2005
- End: September, 2009
- Percent complete: 70%

Budget

- Total project funding: \$1.8M
 - DOE share: 100%
- FY07: \$400K
- Funding for FY08: \$600K

Barriers

- Lack of understanding of the Transition of a Hydrocarbon-Based Economy to a Hydrogen-Based Economy.
- Lack of an integrated market model of all major components of the Hydrogen Fuel and Vehicle System

Partners

- NREL, ANL, DTI
- GM, Ford, D-C
- UTC, PlugPower, Ballard
- Energy & Environmental Analysis, Inc.
- Collaboration with U.C. Davis Hydrogen
 Pathways Program
- Project management by ORNL

Objectives

- Complete development of an integrated market model of the hydrogen transition.
- Construct and publish credible scenarios of the transition to hydrogen fuel cell vehicles.
- Collaborate with IPHE/IEA to develop joint EU and North America transition scenarios.
- Analyze the potential for a federal acquisition program to establish a sustainable North American non-automotive PEM fuel cell industry.
- Update and improve the HyTrans integrated market model.

Milestones

- Publish results of hydrogen transition analyses.
 - ORNL HyTrans Report: June, 2007
 - Transition Scenarios Report: March, 2008
- Complete joint IPHE/IEA report on US/EU hydrogen transition scenario coordination: April, 2008
- Develop preliminary estimates of the impacts of the hydrogen transition on GHG emissions and oil dependence: July, 2007
- Conduct rapid assessment of the potential for a federal nonautomotive fuel cell acquisition program to create a sustainable North American PEM fuel cell industry: April, 2008 (draft & briefing to Interagency Task Force).
- Updated and enhanced HyTrans: September, 2008

Approach

- Market Simulation Model Development
 - HyTrans market simulation model integrates hydrogen supply, fuel cell vehicle manufacturing, choice of vehicle technology and hydrogen fuel use in a multi-period non-linear optimization framework. (Solves the "chicken or egg" problem.)
- International Collaboration
 - With EU colleagues, compared and contrasted premises, methodologies and assumptions, surveyed H2 transition models and developed typology, developed new advanced vehicle technology characterizations based on PSAT simulations.
- Extension to Stationary Applications:
 - Based on available literature and in-depth interviews, constructed a non-automotive PEM cost model including learning-by-doing and scale economies.

In FY 2008 we are focusing on disseminating results of the transition scenarios establishing international partnerships and building towards future assessments.

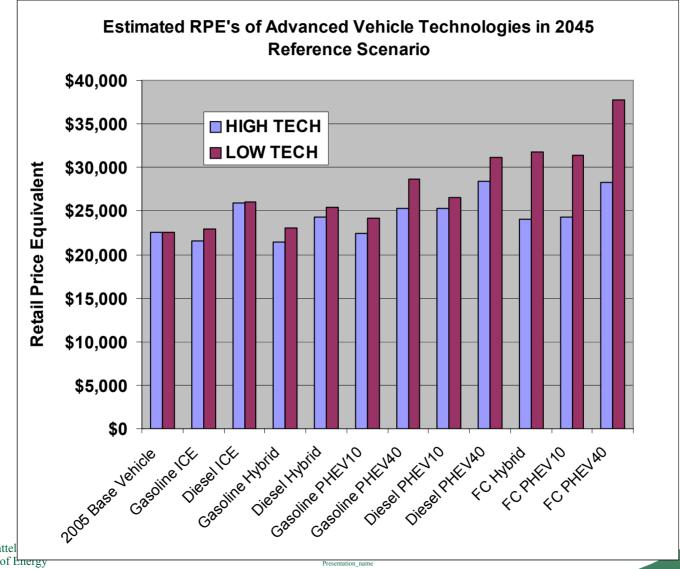
- Communicating the results and implications of the first integrated national hydrogen transition analysis.
- Completing the first phase of international collaboration on hydrogen transition analysis.
- Enhancing and updating HyTrans for calculating GHG and oil dependence benefits and for future scenario analyses.
- Using methods developed for HyTrans to conduct a rapid assessment of the potential for a non-automotive PEM industry in N.A.

ORNL/TM-2008/30

Analysis of the Transition to Hydrogen Fuel Cell Vehicles

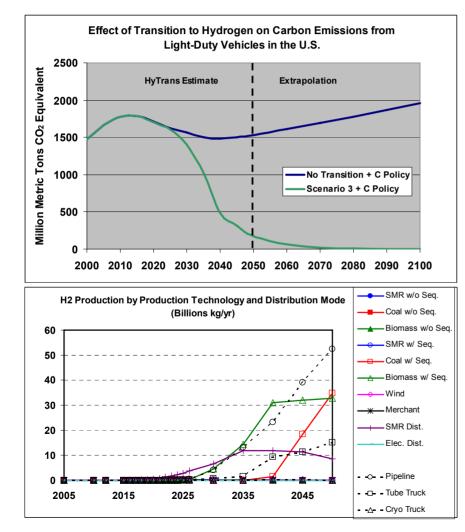
the Potential Hydrogen Energy Infrastructure Requirements

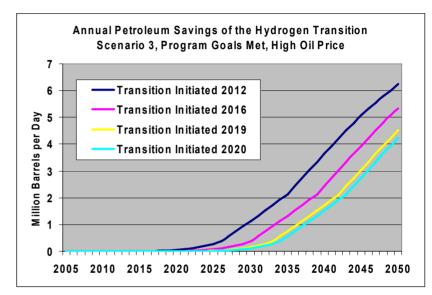
PREPARED BY		
DAVID L. GREENE		
PAUL N. LEIBY		
BRIAN JAMES		
JULIE PEREZ		
MARGO MELENDEZ		
ANELIA MILBRANDT		
STEFAN UNNASCH		
MATTHEW HOOKS		
EDITED BY		
SHAWNA MCQUEEN		
DIRECTED BY		
SIGMUND GRONICH		
M	ARCH 2008	


Accomplishments

The report of the first integrated national hydrogen transition analysis was published and reported on in testimony to California ARB.

cta.ornl.gov/cta/Publications/Reports/ORNL_TM_2008_30.pdf




7 Managed by UT-Battelle for the Department of Energy As part of the IPHE/IEA analysis, we developed new component-based estimates of the performance and cost of advanced technologies (including PHEVs) in collaboration with Argonne and EEA, Inc.

8 Managed by UT-Battel for the Department of Energy

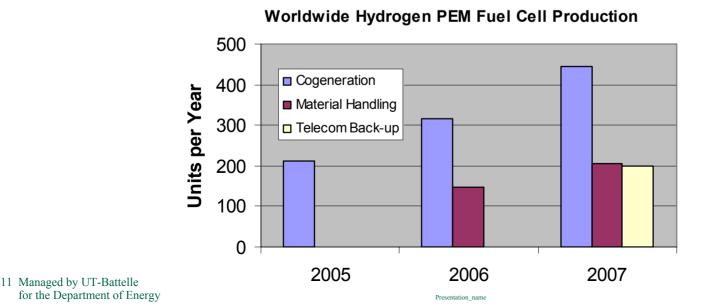
We developed initial estimates of the impacts of a transition to hydrogen on oil use and GHG emissions. More precise estimates will be made after the FY 08 HyTrans updates and enhancements.

- "No Transition" scenario assumes high technological progress – e.g., all FreedomCar program goals are met.
- Carbon-constraining policy has strong effect on evolution of H2 production sources

9 Managed by UT-Battelle for the Department of Energy

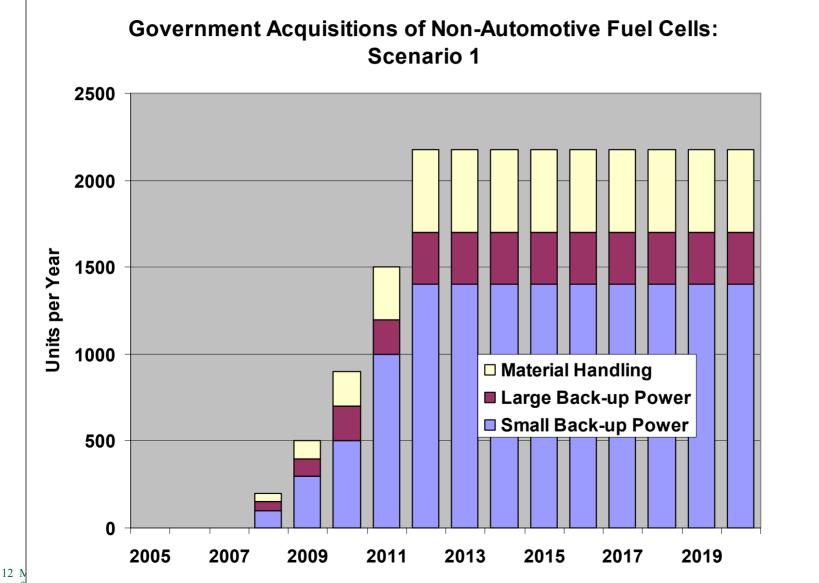
Could a government acquisition program for non-automotive PEM fuel cells create a sustainable North American market?

- A rapid study for DOE/HFCIT drawing on existing market studies and interviews with engineers and marketing analysts of three firms:
 - UTC
 - Plug-Power
 - Ballard
- Could a feasible federal acquisitions program drive down costs to a level that could sustain a viable domestic market?
 - Scale economies
 - Learning-by-doing
 - The answer appears to be, YES.
 - Production capacity exists to begin now.
- Proposed time period for federal program: 2011-2015
- Loud and clear message from manufacturers: Don't wait until 2011. They may not be there. Start now at whatever level is possible.

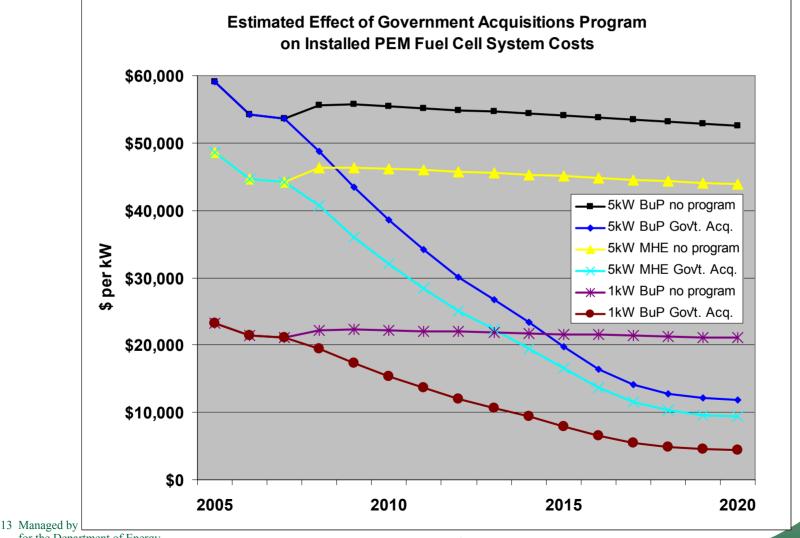


Our assessment focused on three markets.

• 1 kW BuP market size 125,000 units, 5% replacement per year, 2%/yr. growth.

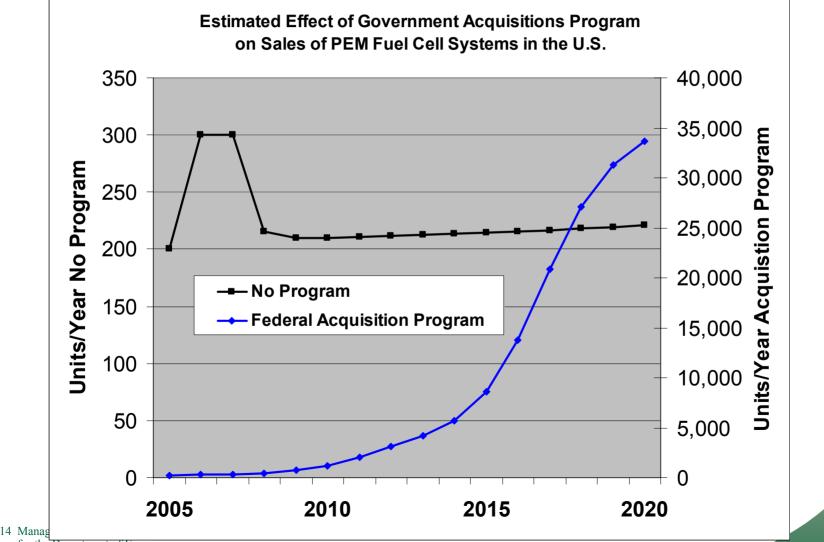

• 5 kW BuP market size 125,000 units, 5% replacement per year, 2%/yr. growth.

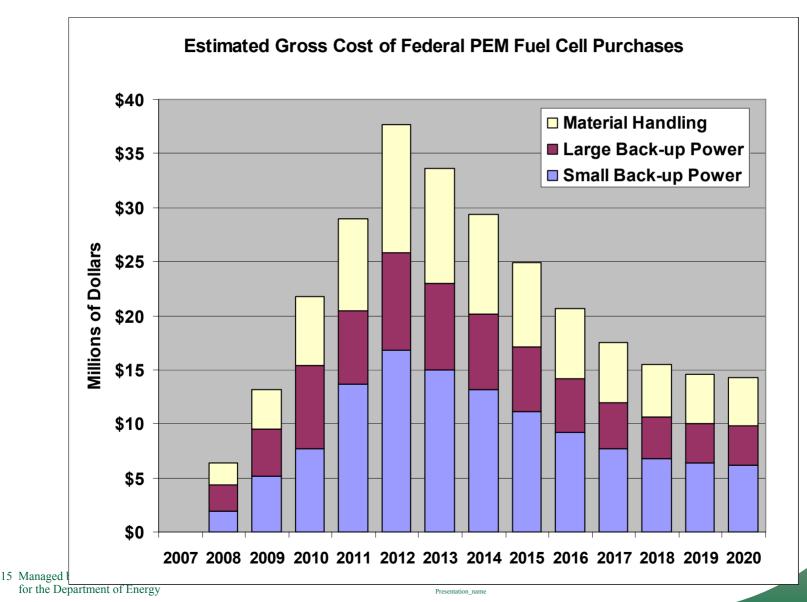
• 5 kW MHE market size 250,000 units, annual replacement of 5% per year, 2% growth.



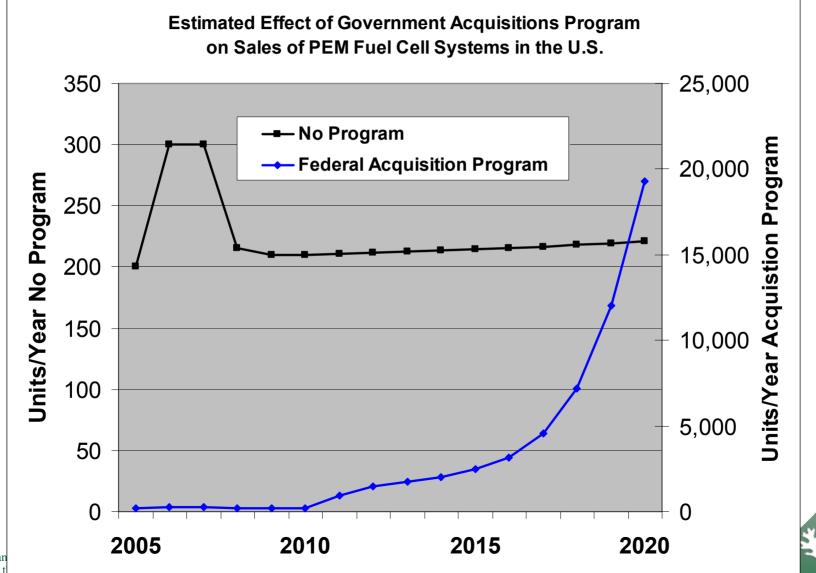
A detailed evalution by NREL estimated a potential federal market of over 2,000 units per year.

for the Department of Energy


Assuming conservative rates of learning and moderate scale economies, a federal program of that size should be large enough to have a significant impact on fuel cell system costs.


for the Department of Energy

It appears likely that a federal acquisition program could stimulate enough learning-by-doing and scale economies to create a moderately sized, sustainable North American PEM fuel cell industry.


for the Department of Energy

Gross federal expenditures would rise to \$35 million in 2012 but then decline as learning and scale economies drive down costs.

Delaying a program until 2011 and cutting purchases in half probably would not work because the industry would not last that long.

This quick analysis suggests that a federal acquisition program could catalyze a sustainable North American PEM fuel cell industry.

- Conservative assumptions were used for scale economies and learning-by doing.
- The production capacity to begin such a program exists now and more can be added, as needed.
- Given the assumptions for the scenario presented, federal purchases would be adequate to drive down costs levels that would allow OEMs to compete effectively in private sector markets before 2015.
- A delayed scenario with half the number of federal acquisitions did not lead to a successful industry by 2015.
- In the industry's view federal acquisitions should begin as soon as possible to avoid a loss of capacity that could be irreversible.

17 Managed by UT-Battelle for the Department of Energy

Future Work

- Enhance and update HyTrans
 - Calibrate to AEO 2008
 - Incorporate new vehicle technology data including PHEVs
 - Incorporate explicit representation of uncertainty
 - Facilitate alternative assumptions and sensitivity analysis
 - Update to new versions of H2-A, and GREET
- Continue work with IPHE/IEA toward joint US/EU hydrogen transition scenario analyses.
- Publish peer-reviewed report on the GHG and oil dependence impacts of the transition to hydrogen-powered transportation.
- Participate in IPCC Global Assessment of Renewable Energy Resources (if approved).
- Publish documentation for updated and enhanced HyTrans, make model available to other modelers.

