Analysis of Hydrogen Production and Delivery Infrastructure as a Complex Adaptive System

> George S. Tolley (312) 431-1540 gtolley@rcfecon.com RCF Economic and Financial Consulting, Inc. June 11, 2008 Project ID #

> > AN5

This presentation does not contain any proprietary or confidential information

Timeline

- Project start date: July 2005
- Project end date: June 2009
- Percent complete: 60%

Budget

- Total project funding \$3,616,634
- FY05-06
 - \$1,626,901 budgeted
 - \$700,000 funded
- FY07
 - \$1,344,120 budgeted
 - \$ 1,100,000 funded
- FY08
 - \$645,613 budgeted
 - \$1,200,000 anticipated
- FY09
 - \$616,634 anticipated

Barriers

Barriers addressed

- Lack of understanding of the transition of a hydrocarbon-based economy to a hydrogen-based economy
- Lack of consistent data, assumptions and guidelines
- Lack of prioritized list of analyses for appropriate and timely recommendation
- Lack of understanding of future market behavior

Partners

- RCF, prime
- Argonne National Laboratory
- BP
- Ford Motor Co.
- Protium Energy Technologies
- Industry Advisors

Project Purpose

 <u>Purpose</u>: Deal with the chicken-or-egg problem between supply of hydrogen fuel and purchase of hydrogen vehicles, using agentbased modeling. Overall aim is to answer the questions

> "Will the private sector invest in hydrogen infrastructure?" "What, if any, policy assistance is needed?"

Inputs:

- Feedstock and capital costs of producing hydrogen fuel
- Risk profiles of investors
- Learning behavior
- Cost and performance characteristics of vehicles
- Drivers' refueling behavior
- Fuel prices hydrogen and gasoline
- Government policies (tax credits, pilot programs, government risk sharing, other)

Brief Description of Model

Model of a Complex Adaptive System

Agent-based model explains investment in hydrogen infrastructure and purchase of hydrogen vehicles

- Investors supply infrastructure that makes hydrogen fuel available--depends on fuel demand
- Fuel demand is by drivers who purchase hydrogen vehicles--depends on fuel availability

Agent-Based

- Each actor "agent" modeled individually
- Agents don't perfectly maximize—make approximations or use rules of thumb
- Agents interact over multiple periods increasing their knowledge and changing their decision rules

Geographical Detail

- Agents are specified by location within city
- Decisions are influenced by location

Sequencing of Decisions over Time

- Agents learn from mistakes, neighbors, government programs
- Infrastructure and equipment may be abandoned (stranded assets)

Drivers—decide whether to buy a hydrogen vehicle

- Knowledge about hydrogen vehicles
- Attitudes toward hydrogen--greenness
- Socio-demographic characteristics
- Imitation of neighbors
- Concerned with inconvenience of refueling
- Worry about risk of running out of fuel

Investors—decide type of infrastructure to supply, how much, and where to locate

- Depends on cost of funds and willingness to take risks
- Build facilities based on expectations about complicated situations
- May make non-optimal decisions
- Learn from experience

Decision Sequence in Model

Stock of Hydrogen Vehicles in L.A.

Project Accomplishments to Date

Prior to FY2008 Constructed Driver and Investor Modules Obtained Preliminary Results

Today's presentation is on FY2008 progress:

- 1. Centralized H2 Production
- 2. Upper Management
- 3. Model Validation
- 4. Policy Analysis

>

>

1. Centralized Production Option <u>Production and Distribution at Fueling Site</u>

- \$2M SMR units, 1,500 kg per day capacity, at fueling site
- One station is small enough to allow maximum utilization (70% of capacity)
- Levelized cost is the same regardless of year built.

Centralized Production

- \$181m SMR units
- 379 K kg per day
- at varying capacity
- 100 km from L.A.
- Levelized cost is raised by need to cover early unused capacity

Distribution from Centralized Site

- \$13.6b Delivery and Dispensing System
- Transmission pipeline to city, 2 urban trunk lines
- Service pipelines to fueling stations
- Geologic storage, compressors, dispensing station

<u>Switch to centralized occurs when economies of</u> <u>scale make levelized cost of centralized lower</u> <u>than distributed cost</u>

Year of Entry Of Centralized Production

<u>Cost functions based on H2A show how the year of</u> <u>entry of centralized production will occur sooner:</u>

- The more rapid is market demand growth
- The fewer distributed stations that are built prior to centralized entry, since existing distributed stations take away volume that would otherwise lower losses on unused centralized capacity
- The higher is the cost of distributed production

2. Role of Upper Management in Infrastructure Provision Profitability Estimates By Technical Staff May Be Over-ruled by Upper Management

In Addition to Standard Analysis, A Project Must Jump Hurdles Reflecting Broader Company Goals

Upper Management Optimism or Pessimism Gives Estimates Different From Staff

* Based on discussion with industry partners on how companies view risk

3. Model Validation

Sensitivity Analysis

- <u>Narrow Confidence Intervals</u> are Obtained for Sensitivity of Vehicle Adoption Path to 126 Cost Parameters
- <u>High, Medium, and Low Scenarios</u> are Needed for 7 Driver and Investor Parameters. Strategy: Plan for Medium Scenario. Be Prepared to Shift Policy if Other Outcomes Occur

External Validation

 ABM model replicates general pattern of adoption path experienced by previous similar innovations

Industry Cooperators

- Industry advisors give feedback and ideas for realism
 Peer Review
- Team to be assembled during final year

Sensitivity of Market Penetration to Capital Cost of Fuel Station

Scenario	Capital Cost of Station	Percent market share by			
		5 th year	10 th year	20th year	30th year
Highest Penetration	\$1.37M	12.3%	42.9%	68.9	76.7%
Middle Penetration	\$2.74M	9.0%	31.9%	71.0%	76.4%
Lowest Penetration	\$4.12M	5.5%	21.5%	58.4%	71.0%

Sensitivity of Market Penetration to Early Adopter Assumptions

- The population contains a mix of adopter types. Early adopters obtain greater utility from acquiring new technologies, such as H2 vehicles. Go-with-the-crowd adopters only copy what others have done.
- A mass of early adopters (5-10%) are needed to start early vehicle adoption

4. Policy Analysis

Government assistance including tax credits, pilot programs and government risk sharing can help achieve early adoption goals.

- Policy scenarios answer question: What policies are required to reach adoption goals?
- One of several examples is tax credit on purchase of hydrogen vehicle

Sensitivity of Market Penetration to H2 Vehicle Price-Volume Response

Summary

- ✓ Chicken is Investor. Egg is car driver. Later interaction.
- ✓ Will the private sector invest? Yes. Eventually.
- Adoption depends on rules of thumb, risk aversion, attitudes and learning, in addition to traditional cost considerations. Gradually approaches optimum.
- Model explains transition from distributed to centralized production.
- Model is policy tool to evaluate tax credits, pilot programs and government risk sharing aimed at speeding adoption.
- Model is being validated by sensitivity tests, replication of other innovations, industry opinion and peer review.

