

The producers value of Water in a Hydrogen Economy

Richard G. White Noah C. Goldstein

Jun 12, 2008 Project ID # AN7

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start: Sept 07
- End: Oct 08
- Percent Complete: 75%

Budget

- Total project funding
 - DOE \$440K
- Funding received in FY07
 - \$200K
- Funding for FY08
 - \$240K

Barriers

- Future Market Behavior (A) Market Transformation
- Inconsistent data, assumptions and guidelines (C)
- Unplanned Studies (E) Resource Requirements and Availability

Partners/Collaborators

- UC Davis ITS (Model Parameterization)
- LBNL (L.Dale)
- Sandia (M. Hightower)
- NREL(M. Ruth)

Project Objectives

- Characterize the water requirements for hydrogen production
 - Asses the water requirements inside the H2 plant
 - Water intensity
 - Water quality
 - Impact of water on H2 costs
 - Asses external water requirements in support of H2 Production
 - Embedded water of input resources
 - Source reliability (quantity and quality)
 - Regional water influences
- Develop framework for assessing the impact of water in hydrogen production
- Comparative analysis with water use for other fuel options
- Evaluate regional conditions that may impact adoption hydrogen production for a particular region

Approach: Background

Frame problem of water requirements as a decision opportunity for a hydrogen producer

- Balance Energy Water tradeoffs
 - Design plant assuming water "may" be a critical resource
 - Regional dependent problem
- Broaden scope of planning problem to infrastructure not typically included
 - Similar to a Wheel-To-Wheels(WTW) approach with the added complexity of water reuse.
 - Assess water withdrawal, consumption and reuse vs. return
- Decision variables :
 - Production method
 - Electric source
 - Cooling technology
 - Water reuse

- tions
- Hydrogen production at scale requires development of supporting infrastructure (e.g. electricity generation, water pre and posttreatment, water conveyance and acquisition) that is not required small scale
- Electricity can be produced by a variety of methods
- Water value and cost and may be different in different regions of the country and might influence the choice of technologies

Approach: H2-Water-Balance

H2W - Hydrogen - Water Nexus Model

 λ = End - Use Efficienc y

H2-W The Hydrogen-Electricity-Water Pathway

•Significant quantity of electricity is needed for input to electrolysis process

•Cooling water in electricity generation can be large

s +---->

•Hydrogen producers have choice of electricity source

•Opportunity for water savings utilizing newer technology

H2 Pathways Examined:

Fuel Production Intensities

Technology	Process Water	Process Electricity	Process Fuel F_p	Process Cooling
	Q_P (gal/kg)	E_P (kWh/kg)	(MMBTU/kg)	Q_{CW} (gal/kg)
SMR Forecourt Air Cooled	1.1 - 1.3	3.7	0.17	n/a
SMR Forecourt Water Cooled	1.1 - 1.3	3.2	0.19	123
SMR Central	1.0 – 1.3	0.55 - 0.8	0.15	
Electrolysis Forecourt	2.4 - 2.7	55 - 81	n/a	
Gasoline	1 - 2.5			

Sources: NREL 2002 Hydrogen Supply: Costs Estimate for Hydrogen Pathways - Scoping Analysis: H2Gen Manufacture Specification: H2A Forecourt Electrolysis : Energy Demands on Water Resources: Report to Congress on Interdependency of Energy and Water 2006:

Source Water	Water Treatment Technology	Coefficient t_s
Treatment Efficiencies	Reverse Osmosis Brackish	1-1.5
	Reverse Osmosis Saline	2 - 9
	Ion Exchange	1:1

Power Plant Cooling	Cooling Type	Requirement $Q_{CW}(E)$ (gal/kWh)	Coefficient $lpha_{\scriptscriptstyle CW}$
Parameters	Once Through	0.1 - 0.5	60 - 200
	Wet	0.18 -1.4	1 - 1.5
	Dry	0	1

Source: Energy Demands on Water Resources: Report to Congress on Interdependency of Energy and Water 2006:

Sources: GE Manufacture Specification: Personal communication

H2-W Water Intensity Preliminary Results:

DOE Hydrogen Program

H2-W Water Intensity Preliminary Results:

Hydrogen Water Economics Preliminary Results:

Water Intensity of electricity can be reduced with minimal impact on H2 price \$12

•Changing a 500 MW NGCC from Wet cooling to Dry cooling plant has annualized change in producers cost of electricity of +3% \$/kWh

•Change in retail electric price would be more due to mark-ups

•Change in cost of hydrogen production

- 2% for Electrolysis
- >1% for SMR

Sources: NREL Hydrogen Supply: Cost Estimates for Hydrogen Pathways –Scoping Analysis 2002 . Cost and Value of Water Use at Combined-Cycle Power Plants, California Energy Commission, 2006.

The Value Of Water (VOW) for a hydrogen producer

Cost of Water Supply

- Regionally/source
 dependent cost
- \$0.2 \$8 per 1000 gal minimum requirement

Equivalent Cost of Water (I.e. cost of recycling)

- \$3.3 \$6.1 per 1000 gal in CEC study
- Regionally and climatically dependent
- Compare technologies with this method

Residual Imputation

- VOW = Revenue Non-water costs
- Requires assumption about hydrogen demand
- Under development

Improved estimates of the value of water will improve decisions regarding water dependent technology investment

Regional geography influences how water can be utilized in fuel production

Assume ..

Tasks:

- 1) Develop analysis of water requirements Literature Search, Systems models development
- 2) Determine engineering parameters and commercial constraints Asses data quality and inconsistencies across previous studies
- 3) Determine preliminary economics Assess value of alternative technologies, sensitivity analysis
- 4) Assess key regional scenarios and solutions Regional analysis water supply cost curves
- 5) Assess and identify climate change concerns.

Proposed Future Work

Tasks:

- 1) Develop analysis of water requirements
- 2) Determine engineering parameters and commercial constraints
- 3) Determine preliminary economics
- 4) Assess key regional scenarios and solutions
- 5) Assess and identify climate change related concerns
- X) Integration with MSM
- Y) Data collection through coordinated metering
- Z) Regional Geographic Hydrogen-Water Benchmarking Scorecard

- The H2-W framework extends the bounds of water impacts in the hydrogen production life cycle
- Electricity can be the biggest water user in the hydrogen production life cycle
- Hydrogen-water intensity can be kept low with new technology at small cost relative to cost of hydrogen
- Price, Value, and Availability of water to a producer will be dependent on the geographic location
- Water can be recycled more easily than other resources like gasoline, or C02