1

Innovation for Our Energy Future

Adapting the H2A Hydrogen Production Cost Analysis Model to Stationary Applications

Darlene M Steward, Mike Penev National Renewable Energy Laboratory June, 2008 Project ID: ANP1

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline	Barriers
Project start date – January 2008	Section 4.5 of the Program's RD&D Plan B: Stovepiped/siloed analytical capabilities
Project end date – H2A Stationary Model v1.0 September 2008	C: Lack of consistent data, assumptions, and guidelines E: Unplanned Studies and Analysis
Percent complete – 60%	
Budget	Partners
Total project funding \$130K to NREL Funding received in FY07 \$0 Funding for FY08 \$128K	H2A Team: DOE, NREL Directed Technologies, Inc. Partners/Reviewers: DOE FE Battelle, Fuel Cell Energy, UTC, Plug Power, LOGANEnergy Risø National Laboratory (Denmark)

Expand the capabilities of the H2A model to evaluate stationary production of:

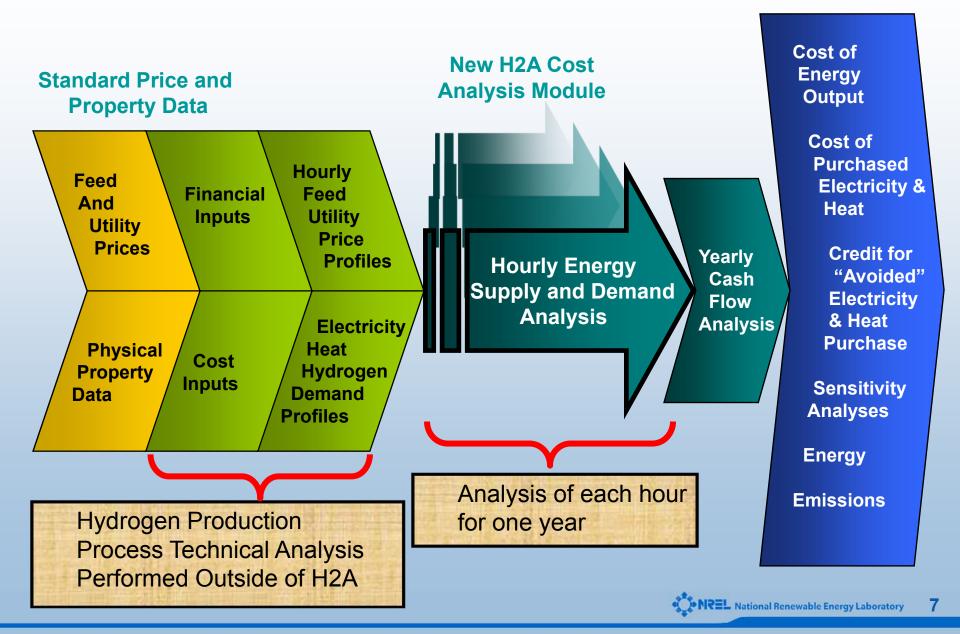
- Electrical power
- Heat co-generation
- Hydrogen co-generation

The H2A Mission

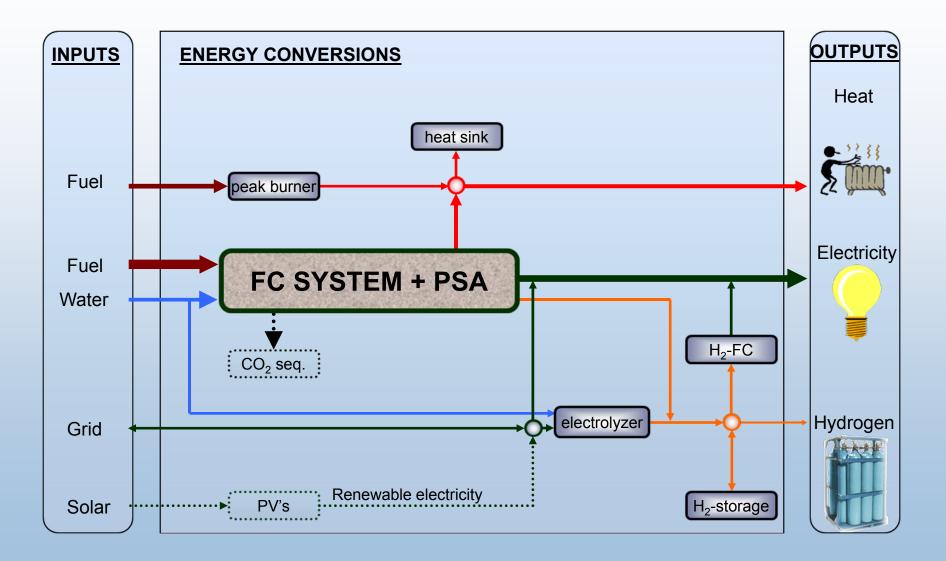
Improve the transparency and consistency of cost analysis, improve the understanding of the differences among analyses, and seek better validation from industry.

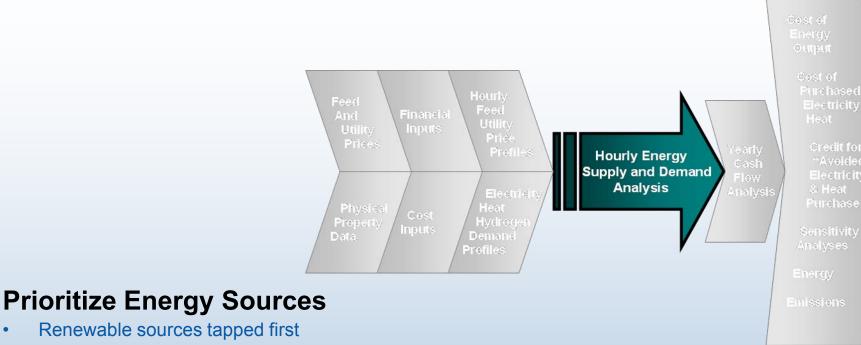
The H2A model aims to make analyses:

- Consistent
- Transparent
- Comparable


Month / Year	Milestone
3/08	1) Meet with industry partners
6/08	2) Incorporate industry feedback
8/08	3) Draft H2A Stationary Model Version 1.0 Complete
9/08	4) Final version 1.0 of H2A stationary model complete

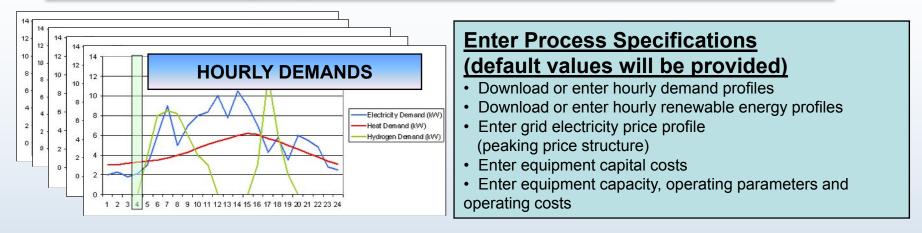
Technical Approach Tasks

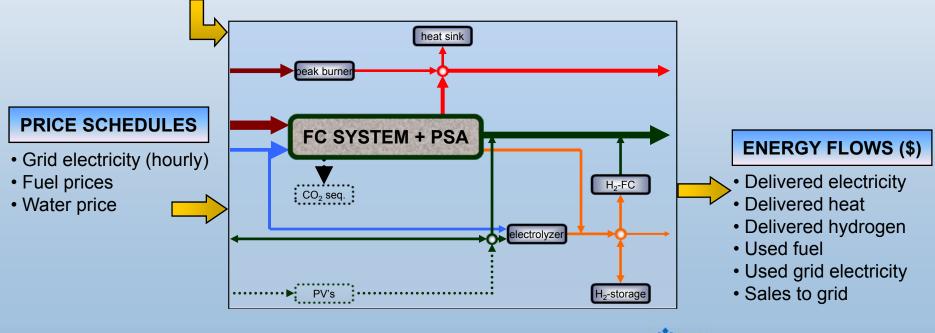

Task	Description
1	Develop model of hourly energy use. Refine model based on industry and partner feedback (Milestones 1 and 2)
2	Develop and implement energy demand profile input strategy and equipment cost and performance input sheets. Refine input strategy based on industry and partner feedback (Milestones 1 and 2)
3	Integrate task 1 and 2 outputs into H2A model structure and cash flow analysis (Milestone 3)
4	Review and refine version 1 of H2A life-cycle analysis model for stationary applications (Milestone 4)


Technical Approach

Task 1 – Model of Hourly Energy Use

Task 1 – Model of Hourly Energy Use

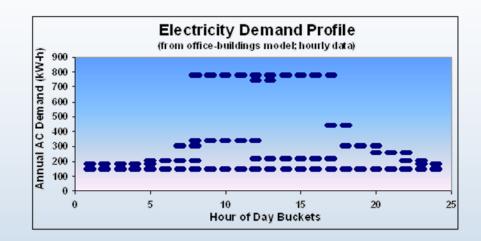


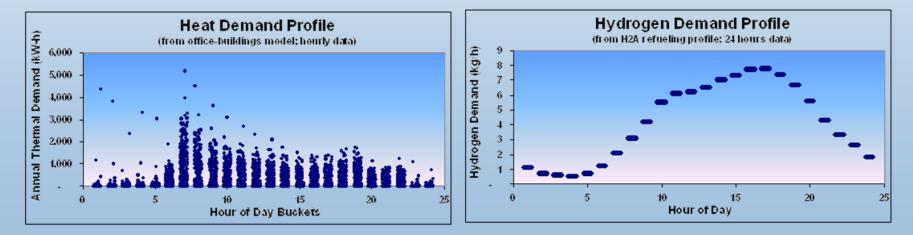

- Minimal power outputs used second
- Additional needs met with additional capacity
- Grid balances excess demand and supply

Total Resulting Annual Energy Flows

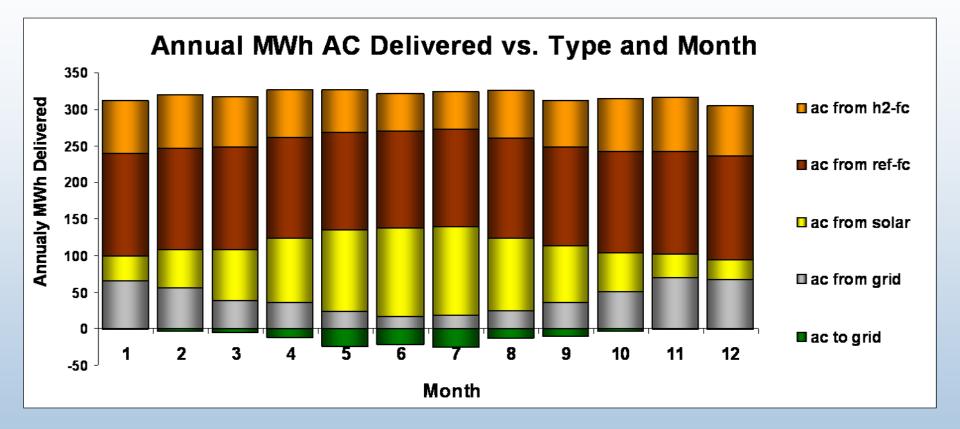
- Fraction of demand supplied by each technology
- Sum hourly AC supplied
- Sum hourly heat supplied
- Sum hourly hydrogen supplied
- Sum hourly fuel consumption
- Sum hourly water consumption

Task 2 – Develop input strategy for demand profiles equipment variables and costs

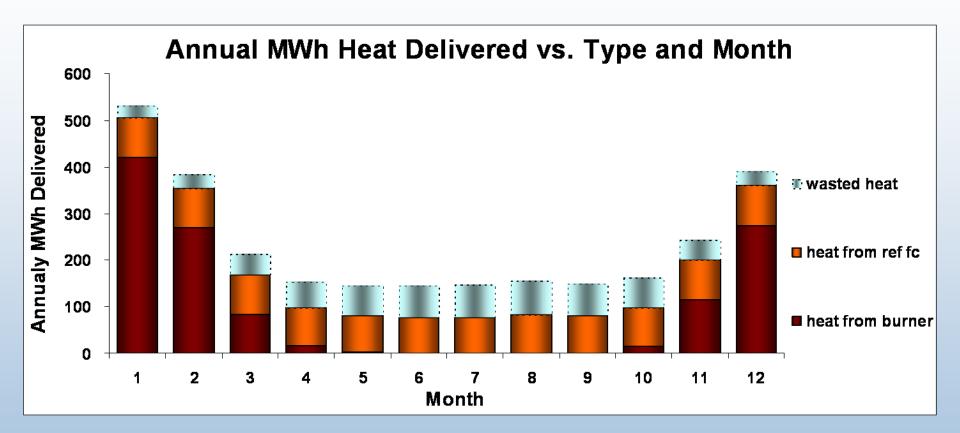



Task 2 – Example Input Profiles

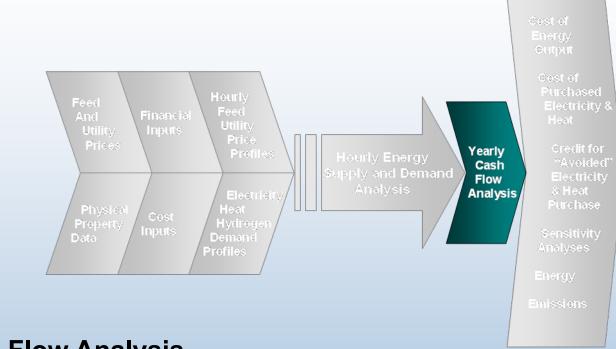
EXAMPLE YEARLY DEMANDS


Demand	Quantity	Units
Electricity	3.1	Million kW-h/year
Heat	1.6	Million kW-h/year
Hydrogen	100	kg/day

Representative profiles will be available online or can be user-specified.



Task 2 – Example Annual AC Supply Profile


Visualization of results shows energy source types to satisfy total AC demand.

Task 2 – Example Annual Heat Supply Profile

Visualization of results shows demand supplied and heat wasted (cooling tower).

Task 3 – Integrate Values from Tasks 1 and 2 into H2A Cash Flow Analysis

H2A Cash Flow Analysis (lifetime summary of costs and revenue)

• Yearly summary feed and grid electricity costs and "revenue" from electricity, heat, and hydrogen produced used in H2A cash flow calculations

• Capital, operating, replacement costs and financial parameters (specified in Step 1) used in H2A cash flow calculations

Task 4 – H2A life-cycle analysis

Feed

(cost, energy and emissions results)

Financia

Feed

Cost of Energy Output

Cost of

Heat

oply and Demand

Purchased

Electricity &

Credit for "Avoided"

Electricity

15

H2A standard analysis interfaces will be available as well as sensitivity analysis of results.

analysis of results.	Physical Property Data	/ He	drogen /			Ánalysis	7/	//	nalysis	Purchase Sensitivity
COST RESULTS		Profile					V			Analyses
Specific Item Cost Calculation Cost Contribution (\$ kg) Percentage of H2 Cost Cost Component Cost Contribution (\$ kg) Percentage of H2 Cost Copical Costs \$0.790 34.0% Decommissioning Costs \$0.001 0.0% Fried O&M \$0.292 12.6%		Sensitivity Analysis								Energy Emissions
Feedback Costs \$0 595 25 2% Other Raw Material Costs \$0 463 19.9% Brypnoder: Credits \$0 000 0.0% Other Variable Costs (including utilities) \$0 192 8.3% Total \$2,323 \$2		-				158.5M				
ENERGY	Total Capital Investment			-20%		158.910			+30%	
Energy Data Feedstock Energy Input (GJ/kg H2) Energy Input (kWh/kg LHV (GJ or H2) mmBtulusage unit)	Usa Feedstock Biomass Usage (kg/kg H2)		10.5			13.6		16.9		
AN2 Enomass Taget_metric 0.267 74.066 0.020 Utility Utility 0.267 74.066 0.020	Feedstock Biomass Price (\$2005)/tonne			34		42		50		
Commercial Natural Gas, webric 0.006 1.729 0.037 Industrial Electricity metric 0.006 1.600 0.004 Carbon Sequestration	Operating Capacity Factor (%)				95	90		80		
Energy Output (GJ/kg Energy Output LHV (GJ or H2) (kWh/kg H2) mmBtu/usage unit) p	Labor Requirement (FTE)				35	54 70				
Byproducts	1	1.4 1.45	1.5 1.4		.6 1.65 num H2 Sellin	1.7 1. g Price (\$/kg)	75 1	.8 1.85	i 1.9	
esuits / Cash Flow Analysis / Tornado Chart / Sensitivity_Analysis / Energy Feed & Utility Prices / Non-Energy Material	Prices / AEO Data / HyARC Physical Property Dat	ta 🔏 Debt Financing					Nationa	al Renewa	ble Ener	gy Laboratory

Future Work

The H2A Stationary Model will be used in FY09 for cost and energy analyses of a wide variety of stationary applications for production of hydrogen, heat, and electricity. The model will continue to be enhanced to facilitate these analyses.

The H2A stationary analysis tool provides the flexibility needed to evaluate many potential configurations while maintaining the consistency and transparency of the H2A production analysis tool.