

Analysis Of Energy Infrastructures And Potential Impacts From An Emergent Hydrogen Fueling Infrastructure

Anthony McDaniel Sandia National Laboratories Project ID # ANP4 June 9, 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Dec. 2007
- Finish Sep. 2015
- 2% complete

Budget

- Total project funding
 - DOE \$200K
- Funding received in FY07
 - \$0K
- Funding for FY08
 - \$150K

Barriers

- A. Future Market Behavior
- B. Stove-piped/Siloed Analytical Capability
- E. Unplanned Studies and Analysis

Targets

 Analyze issues and long term impacts related to infrastructure evolution, hydrogen fuel, and vehicles (Task 1)

Partners

 Looking to partner with UC-Davis and UC-Berkeley as program grows

Objectives

- Use dynamic models of interdependent infrastructure systems (natural gas, coal, electricity, petroleum, water, etc.) to analyze the impacts of widespread deployment of a hydrogen fueling infrastructure
- Identify potential system-wide deficiencies that would otherwise hinder infrastructure evolution, as well as mitigation strategies and unintended collateral effects on supporting systems

Milestones

ΜΜ / ΥΥΥΥ	Milestone
Apr / 2008	Build a SD model of the CA natural gas distribution system coupled to refined petroleum and electricity generation systems in order to execute a regional analysis of the impacts of SMR- derived hydrogen fuel on the natural gas infrastructure.
Sep / 2008	Extend the SD model to include refined details of the electricity generation sector in order to resolve key interdependencies and complex behaviors that may result from non-linear feedback effects. Complete the analysis for CA.

Approach

Analysis-driven approach defined by programmatic needs

 Provide analysis and insight into the dynamic behavior of complex systems

System dynamics: Methodology

- Pose detailed questions
 - Will the demand for SMR-derived H₂ negatively impact NG distribution and short circuit vehicle roll-out?
 - Is there a potential for infrastructure interdependency issues to become problematic?
 - Are there means to mitigate negative or amplify positive consequences?
- System dynamics: Analysis
 - Formulate SD models of infrastructure components and interrelations to a sufficient level of detail
 - Use Vensim software to quickly and efficiently generate code
 - Dedicate resources to analysis not model formulation

Model California Energy Infrastructures

- Natural Gas and Refined Petroleum distribution dynamics
 - Governed by supply/demand market theory
- Vehicle adoption dynamics
 - Bass technology diffusion model
- Electricity distribution dynamic not yet coupled

CA Aggregate Natural Gas Distribution Model

- Supply side dynamic accounts for:
 - NG receipts, in-state production
- Demand side dynamic accounts for:
 - Electric power, industrial, commercial, residential, and CNG vehicle fleet (currently static variables)
 - H₂ fuel via steam methane reforming (dynamic variable)
- NG spot price determined by:

DOE Hydrogen Program

- Market latency and elasticity (both supply and demand)
- Power law relationship between the demand and supply balance
- H₂ fuel price a function of NG price, market forces, conversion efficiency, and distribution margins (consistent with H2A)

CA Aggregate Refined Petroleum Distribution Model

- Supply side dynamic accounts for:
 - Refining capacity (fixed variable)
 - Spot refining margins (dynamic variable)
- Demand side dynamic accounts for:
 - Gasoline demand by ICE drivers
- Gasoline price determined by:
 - Market latency and elasticity (both supply and demand)
 - Price of oil on world market

Bass Technology Adoption Model

 Easily modified to incorporate NREL Discrete Choice Analysis Dynamic

Model Assumptions

Endogenous variables

- Rate of vehicle adoption
- Price and demand (NG, H₂, and gasoline)
- Analysis constrained by fixed or exogenous variables (an incomplete list)
 - NG demand other than H₂, market elasticity factors, crude oil price, CA population or economic growth, NG or electricity import constraints, +others...
 - Sensitivity analysis can be used to capture the range of dynamic behavior for each of these and infer critical behavior
- Model does not resolve geospatial features of the infrastructure but can be addressed if necessary

Impact Of Large H₂ Fueled Vehicle Market Penetration

11

Example Sensitivity Analysis

- Model runs quickly and efficiently on PC
- 1000's of scenarios used to execute sensitivity analysis (stochastic sampling of variables)

Preliminary Findings

- A successful H₂ fueled vehicle rollout in CA represents a small amount of new demand
 - 3.5MM vehicles total about 3% of current NG demand
 - NG infrastructure may have time to adapt over a long time period
 - Increase import capacity

HOWEVER

- 3.5MM vehicles added tomorrow would be a different matter
 - If NG import capacity does not grow then HFV would stress an already stressed system
 - NG and electrical generation in CA today is at <u>capacity</u>

Preliminary Findings

- Gasoline prices would likely drop as H₂ fueled vehicles penetrate market
 - Refining capacity in CA is at its limit; decreasing gasoline demand would free up capacity thereby decreasing refinery margins
 - Falling gasoline prices would make HFV less attractive relative to liquid hydrocarbon ICE vehicles
- The prospect of increasing NG prices and falling gasoline prices due to the H₂ vehicle rollout poses an original question: could HFV become a victim of their own success?

Future Work

- Imperative to include the dynamic behavior of CA electricity generation
 - Relies heavily on the NG infrastructure
 - System already operates at capacity with projected peak power deficits by end of decade

Future Work

- Complete analysis for questions posed against CA infrastructures
 - Integrate electricity and water distribution dynamic
 - Resolve key dynamical behaviors resulting from infrastructure interdependencies
 - Identify system vulnerabilities that may hinder HFV rollout
 - Use a resource utilization metric to quantify system perturbations induced by H₂ fuel demand
- Assess and analyze other US regions
 - Investigate issues stemming from coal-to-hydrogen in regions dependent on coal-derived electrical power

Summary

- System dynamics approach used to analyzing CA energy infrastructures
 - Developed SD model that describes the complex market behavior of interconnected infrastructures
 - Natural gas, refined petroleum, electricity
 - HFV market adoption endogenous to SD model
 - Bass technology diffusion approach
- Vensim software used for code development
 - Fast and flexible model development
 - Dedicate resources to analysis not model building
- Preliminary results suggests that a successful rollout of HFVs in CA does not dramatically increase demand for natural gas, however...
 - Natural gas and electricity systems running at capacity in CA
 - Small perturbations in supply/demand dynamics could have significant consequences

