

Improved, Low-Cost, Durable Fuel Cell Membranes

2008 Hydrogen Program Annual Review

James Goldbach, David Mountz, Tao Zhang, Wensheng He, Jung Yi*, Scott Gaboury and Michel Fouré June 10, 2008

Grant ID: DE-FG36-07GO17008

Project ID # FC-12

*currently at: Samsung Group, Korea

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start Date: Sept. 30, 2007 A) Durability
- End Date: Sept. 30, 2010 •
- % Complete: 20%

Budget

- **Total Funding**
 - DOE: \$6,278k
 - Partners: \$1,569k
- FY2007 Funding Received

• \$0k

 FY2008 Funding Received •\$392k

Barriers Addressed

- B) Cost

Partners

- **Project Lead**
 - Arkema Inc.
- Partners
 - Virginia Tech
 - Oak Ridge National Lab
 - Johnson Matthey Fuel Cells
 - University of Hawai'i
 - Hawai'i Natural Energy Institute (HNEI)

- To develop a membrane capable of operating at 80°C at low relative humidity (25-50%).
- To develop a membrane capable of operating at temperatures up to 120°C and ultra-low relative humidity of inlet gases (< 1.5 kPa).
- To elucidate ionomer and membrane failure and degradation mechanisms via ex-situ and in-situ accelerated testing.
 - Develop mitigation strategies for any identified degradation mechanism.

Milestones – Low RH Membranes

Task #	Milestone #	Title	Project Months	Project Deliverable	Go/No- Go Decision
1	1	Membrane meets 80°C requirements	6		X
	2	80°C membrane delivered to JMFC	8	Х	
	3	Membrane meets > 100°C requirements	18		Х
	4	> 100°C membrane delivered to JMFC	21	Х	
	5	Membrane manufacturing plan complete	36	Х	
2	6	MEA meets 80°C requirements	15		Х
	7	Large MEAs 80°C delivered to HNEI	18	Х	
	8	MEA meets $> 100^{\circ}$ C requirements	27		Х
	9	Large MEAs > 100°C delivered to HNEI	30	Х	
3	10	80°C MEAs perform per DOE requirements	27		Х
	11	> 100°C MEAs perform per DOE	36		Х
		requirements			
4	12	Post-mortem analysis of MEAs complete	36	Х	
5	N/A	Reporting, Planning, Administration	As Required		

• Task 1 work in progress

• Develop new membrane candidates

Background

Polymer blend

- Decouples conductivity from other requirements
- Kynar[®] PVDF
 - Chemical and electrochemical stability
 - Mechanical strength
- Polyelectrolyte
 - H⁺ conduction and water uptake
- Robust blending process
 - Compatible with various polyelectrolytes
 - Morphology and physical property control
- Lower cost approach compared to PFSA
 - Kynar[®] PVDF commercial product
 - Polyelectrolyte hydrocarbon based
- M41 highly sulfonated polyelectrolyte
 - Maximize conductivity at high RH

M41 Physical Properties

	PFSA	M41
Dry Thickness (µm)	25	25
Equivalent Weight (g/(mol H ⁺))	1100	800
Specific gravity (g/cm ³)	1.8	1.5
Water Uptake (%) ^a	37	60
X,Y Swell (%)	15	20
Thickness Swell (%)	14	10-15
Tensile Stress Break (MPa) ^b	19	27
Elongation (%)	103	95
Tear Strength(Ib _f /in) ^c	404	934
Tear Propagation (Ib _f) ^d	0.004	0.018

M41 shows equal/better mechanical properties than PFSA

D882 D1004 D1938

Background – M41 Creep Testing

 M41 shows a significantly larger resistance to flow compared to PFSA (9% vs. 140%)

Background - M41 Transport Properties

Equivalent proton conductivity compared to Nafion[®]

Superior gas barrier property than Nafion[®] membranes

by 4-point in-plane AC measurements in water at 70°C

by electrochemical method at 80°C with 100% RH

*

**

Fuel Cell Testing: BOL Performance

Comparable in-cell performance to Nafion[®] 111 demonstrated

Background – OCV Durability

- Short resistance decreases for PFSA and M41 membranes
- No fluoride and low sulfate emission from M41
- H₂ cross-over remains very low at failure for M41
- Fluoride emission and H₂ cross-over from PFSAs

RH Cycling Durability: Gas Crossover

- Nafion[®] NRE-211 failed at approximately 6,000 cycles
- M41 and PFSA 111-IP MEAs met target of 20,000 cycles

Voltage Cycling Durability: OCV to 0.4 V

- M41 membrane exhibits longer voltage cycling lifetime
- PFSA membranes allow higher current at 0.4V
- H₂ cross-over for PFSA <u>and</u> M41 MEAs at failure

400cm² M41 Testing – Preliminary Data

- 400 cm² (active area) MEAs fabricated by JMFC
- Preliminary data obtained in UTC Power hardware

- M41 MEA H₂/air, 65 °C, 80/60% utilization, ambient pressure
- Pt loading: Anode: 0.2 mg/cm^{2;} Cathode: 0.4 mg/cm²

Development of Low RH Membranes

- Project initiated Sept 30, 2007
- Objectives
 - To develop a membrane capable of operating at 80°C at low relative humidity (25-50%).
 - To develop a membrane capable of operating at temperatures up to 120°C and ultra-low relative humidity of inlet gases (< 1.5 kPa).
 - To elucidate ionomer and membrane failure and degradation mechanisms via *ex-situ* and *in-situ* accelerated testing.
 - Develop mitigation strategies for any identified degradation mechanism.

M41 Low RH *Ex-situ* Testing

FSEC

Additional improvement required to meet low RH targets

1E+03

Low RH Performance of M41-Based MEA

• Inlet RH

Significant performance loss at <65% RH on anode <u>and</u> cathode

Low RH Performance of M41-Based MEA

• With only one-side humidified, reasonable performance is obtained (at ≥25% RH)

ARKeme

Thickness Effect

• 0.7 mil M41 – better performance at low RH

Low RH Membranes: Approach

- M41 good scaffold
 - Good MEA performance at >65% RH
 - 'Bridge the gap' @ lower RH operation
- Blending is transparent to the polyelectrolyte
- 1) Improved M41 production process: M43 membrane
- 2) Analogous approach to phosphoric acid-imbibed membranes
 - Hypothesis: Incorporating bound phosphonic acid groups will increase water retention at low RH
- 3) New polyelectrolytes
- 4) Control morphology of Kynar[®] blends
 - Vary the hydrophobicity/hydrophilicity of Kynar/polyelectrolyte blends
 - Process control
- 5) Additives

M43 Initial Results

New Membrane Generation

- Polyelectrolyte with phosphonic acid groups
 - M41: Highly sulfonated polyelectrolyte

• M51

• 1/4 of sulfonates replaced with phosphonate

• M52

½ of sulfonates replaced with phosphonate

• M53

- ¾ of sulfonates replaced with phosphonate
- Reoptimized PVDF blending parameters
- Produced new membranes (lab-scale)
- Collaboration initiated
 - Prof. V. Ramani (Ilinois Institute of Technology)

MEA Testing – Phosphonated Membranes

Summary

- M41 shows superior durability in accelerated in-situ testing
- M41 MEAs shown to operate down to 65% RH (inlet)
- M41 architecture is a good platform for low RH membranes
- New grant targets low RH performance
 - Process improvements show initial gain
 - Phosphonated materials did not show improved performance
- New membrane production, screening, and testing is underway
 - Varying membrane chemistry and/or morphology

Future Work

- Investigation of structure/property/RH relationships
- Approaches
 - Improved blending process
 - Collaboration with Prof. J. McGrath (Virginia Tech)
 - New Arkema polyelectrolyte / Kynar blends
- *Ex-situ* and *in-situ* testing of new membranes
- Validation and optimization of *in-situ*, low RH performance
- Durability testing
- Elucidation of failure mechanisms

Acknowledgements

• US Department of Energy

- Nancy Garland
- Kathi Epping
- Reg Tyler
- Tom Benjamin
- Johnson Matthey Fuel Cells
 - Rachel O'Malley, Graham Hards, Jonathan Sharman
- Oak Ridge National Laboratory
 - Karren More, Harry Meyer, Shawn Reeves
- University of Hawai'i Hawai'i Natural Energy Institute
 - Rick Rocheleau, Keith Bethune
- Virginia Tech
 - Prof. Jim McGrath

