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OVERVIEWOVERVIEW
Timeline
•Project State Date:  May 2006
•Project End Date:  May 2011
•Percent Complete:  40%

Barriers
•Conductivity at 120oC and low RH
•Swelling Deswelling

Budget
Total Project Funding:   $1.5MM
Funding received in FY07: $300K
Funding for FY08:  $350K
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OBJECTIVESOBJECTIVES

• Design, identify, and develop the knowledge base to 
enable proton exchange membrane films and related 
materials to be utilized in  fuel cell applications, 
particularly for H2/Air Systems at 100-120oC/low RH

• Nano-phase Separated Hydrophilic-Hydrophobic  
Thermally Stable Multi-Block Copolymers

• Correlate Water Diffusion Coefficients with Proton 
Conductivity Under Partially Hydrated Conditions

• Relate Thermodynamics of Nano-phase Formation to 
Ordered Morphology and to Conductivity, Diffusivity and 
Novel Membrane Self Assembly

Objectives and ApproachObjectives and Approach
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Material Design OptionsMaterial Design Options
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Highly HydrophobicHighly Hydrophobic--Hydrophilic Hydrophilic 
Multiblock CopolymersMultiblock Copolymers

A. Noshay and J. E. McGrath, "Block 
Copolymers: Overview and Critical 
Survey," Academic Press, New York, 
January 1977, p.91.an S-B diblock
copolymer

Hydrophilic segments, provides
Proton conductance

Hydrophobic segments, imparts 
mechanical integrity

• Nanophase-separated morphology may be 
precisely controlled through synthesis.

• Enhanced proton conductivity, water diffusion 
coefficient and mechanical strength are expected.

Our Initial work:
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Yu, Xiang; Roy, Abhishek; Dunn, Stuart; Yang, Juan; McGrath, James E.  Synthesis and characterization of sulfonated-fluorinated, 
hydrophilic-hydrophobic multiblock copolymers for proton exchange membranes. Macromolecular Symposia (2006), 245/246(World Polymer 
Congress--MACRO 2006),  439-449.
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1

HydrophilicHydrophilic--Hydrophobic MultiHydrophobic Multi--Block and Block and 
Random(controlRandom(control) Copolymers) Copolymers
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ModulusModulus--Temperature Behavior of a 10KTemperature Behavior of a 10K--10K 10K 
BPSH100BPSH100--BPSBPS--0 Multi0 Multi--Block CopolymerBlock Copolymer

• Tg virtually identical for both linkage types

— 10k-10k with HFB linkage 
--- 10k-10k with DFBP linkage

Analysis performed with TA Instruments DMA 2980 at 1 Hz.  An initial drying run to 200 °C for 10 min 
followed by cooling with liquid N2 to 0 °C for 10 min preceded each temperature sweep.  Samples 
heated at 5 °C/min to 250 °C.  Displacement set at approx. 0.1% of sample length. 



Toward Improved Conductivity of Toward Improved Conductivity of 
Sulfonated Aromatic Proton Exchange Sulfonated Aromatic Proton Exchange 
Membranes at Low Relative HumidityMembranes at Low Relative Humidity

Melinda L. Einsla1, Yu Seung Kim*1, Marilyn Hawley1,
Hae Seung Lee2, James E. McGrath2, and Bryan S. Pivovar1

1Sensors and Electrochemical Devices Group, Los Alamos National 
Laboratory, Los Alamos, NM  87545

2Macromolecules and Interfaces Institute, Virginia Tech
Blacksburg, VA  24061

**Submitted to Chemistry of Materials



Diffusion coefficients of hydrocarbon copolymers Diffusion coefficients of hydrocarbon copolymers 
and Nafion as a function of relative humidityand Nafion as a function of relative humidity

(Nafion is shown for comparison)(Nafion is shown for comparison)
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SFM images of SFM images of 
alternating (top), alternating (top), 
random (center), random (center), 
and multiand multi--block block 

(bottom) (bottom) 
copolymers at copolymers at 
low and high low and high 

humidity.  Image humidity.  Image 
size is 1 mm and size is 1 mm and 
phase range is phase range is 

40° for all images. 40° for all images. 



HydrogenHydrogen--air fuel air fuel 
cell performance of cell performance of 
alternating, random alternating, random 

and multiblock and multiblock 
aromatic aromatic 

copolymers at 100 copolymers at 100 
°C with °C with 

Humidification at Humidification at 
70% (top) and 40% 70% (top) and 40% 

(bottom).  Nafion (bottom).  Nafion 
212 is shown for 212 is shown for 

comparison.comparison.

70% RH
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Effect of water uptake on proton Effect of water uptake on proton 
concentrationconcentration

•Effective CH
+ theoretically 

increases with IEC. However 
water uptake also increases

•Increasing water uptake 
decreases effective proton 
concentration

•Hence, CH
+ goes through a 

maxima when plotted against 
water volume fraction .

◊ Random Copolymer

O Multiblock Copolymer



Multiblock copolymers have higher water and proton Multiblock copolymers have higher water and proton 
diffusion coefficients than random copolymersdiffusion coefficients than random copolymers
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Measured form Impedance method, 30oC

•Both water and proton diffusion coefficient increases with water volume fraction

•Well connected phase separated morphology of block copolymers results in higher 
diffusion coefficients than the random copolymers at a given water content

Measured from PGSE NMR, 25 o C

Increasing water uptake Increasing water uptake



Block
Copolymera

Ion Exchange 
Capacity (IEC) 

(meq/g)

Water 
Uptake

(%)

Hydration 
Number

(λ)

Proton
Conductivityb

(S/cm)

Ea Proton 
transport 

c

(kJ/mole)

BPSH35 1.50 36

30

33

60

100

90

13.3 0.070

70

13.3

14.4

13.4

8.12

9.8

8.9

BPSH-10-BPS-5 1.83 30.3 0.160

8.8

BPSH-15-BPS-10 1.71 29.2 0.140

BPSH3-BPS3 1.33 12.5 0.065

BPSH5-BPS5 1.39 13.2 0.088

BPSH10-BPS10 1.28 25.6 0.095

BPSH-20-BPS-15 1.71 22.7 0.120
a. Acronym : BPSH-x-BPS-y x = Molecular Weight of Sulfonated Poly(arylene ether) in kg/mol

y = Molecular Weight of Poly(arylene ether) in kg/mol
b. Measurements were conducted in water at 30ºC c. Measured in liq water over temp range of 30 to 80 degree C

Characterization of the BPSHCharacterization of the BPSH--BPS Multiblock CopolymersBPS Multiblock Copolymers

O S
O

O
HO3S

SO3H

O O S
O

O
O

F F

F F

O O

A B
n

F F

F F



DFBP series with unequal block lengthsDFBP series with unequal block lengths
15
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aAt 30 ºC in DI water
bIn NMP at 25 ºC w/ 0.05 M LiBr
cDetermined by titration

AFM setpoint ratios: 0.91, 0.95, 0.89; Z ranges: 12, 12, 25 nm and 30°. TEM micrographs: “A” denotes 
direction of air side.  “KD” denotes the knife direction during microtoming.  Scale bars = 100 nm.
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Reverse Roll Film CastingReverse Roll Film Casting

Tw: Thickness of wet films
Td: Thickness of dry films
α: Ratio of speeds of coating and transporting
roll (wipe ratio)
λ: Dimensionless flow rate between 1.23~1.33
ρ: Density of the polymer
c: Concentration of casting solution in w/v

Gap = (Tw/α) /(λ/2) = (1+ ρ/c) Td /(α λ/2)       (Lubrication model)
where

Ratio of speeds of coating and transporting rolls 
α =1.5 to 2.0
Gap between coating and metering rolls

Metering RollCoating Roll

Transporting Roll

Web

Coating Solution

Tm

TwVb

Va Vm



Polymer Processing Influences Polymer Processing Influences 
Performance of Continuous Cast Films  Performance of Continuous Cast Films  

BisSF 17k/12k Block Copolymer 
Films

6F40 Random Copolymer Films



Proton conductivity as a function of RH @ 30Proton conductivity as a function of RH @ 30ooC for VT(BPSHC for VT(BPSH--
BPSBPS--1010--5) sample and NRE212 measured by 5) sample and NRE212 measured by BekkTechBekkTech
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Comparison of VT Sample (BPSH-BPS-10-5) performance at 
80o C between BekkTech, VT and Giner

Only step down process is considered. 

In case of BekkTech, step down was from 70 % RH , for VT, from 80 %RH
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VTVT perspective on the sample performanceperspective on the sample performance

• BekkTech results ~ 38 mS/cm (VT Sample) @ 80 %RH, 30oC, higher than 
NRE212(~30 mS/cm)

• The value for VT sample at 80% RH is expected to be much higher, if it 
was taken during step-down process

• “Step-down” gave higher proton conductivity than “step-Up” process for 
the VT sample ~ differences in vapor phase water absorption and 
desorption  in the sample

• The conductivity value for the BPSH-BPS(10-5) sample is similar to 
NRE212 up-to 50% RH (considering the step down process)
@ 30o C and then drops

• Performance at low RH (~40-20%) may be due to the higher through plane 
swelling-deswelling nature of the sample.

• Can be definitely improved with longer block length materials and with 
reasonable swelling-deswelling characteristics



BPSHBPSH--BPS Multiblock Copolymers with Higher Block BPS Multiblock Copolymers with Higher Block 
Lengths show Anisotropic SwellingLengths show Anisotropic Swelling
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Synthesis of BPSH Synthesis of BPSH –– 6FK Hydrophilic6FK Hydrophilic--
Hydrophobic Multiblock Copolymers at 100CHydrophobic Multiblock Copolymers at 100C
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Influence of Unequal Block Lengths on Influence of Unequal Block Lengths on 
PropertiesProperties

Copolymer a
Ion Exchange 

Capacity (IEC) 
(meq/g)

Water 

Uptake

(%)

Hydration 

Number

(λ)

Proton

Conductivity 
b

(S/cm)

BPSH20-6FK15 1.70 178
20

BPSH15-6FK20 1.33 45 19 0.10
25

58 0.09
BPSH10-6FK15 1.32 8.3 0.07

Nafion112 0.9 15 0.09

a. Acronym : BPSH-x-6FK-y, x and y block lengths in kg/mole of hydrophilic and hydrophobic respectively

b. Measurements were conducted in water at 30ºC



BPSH 35 NRE211 BPSH-6FK(15-15) BPSH-6FK(10-15) BPSH-6FK(15-20)
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Current and Future Research: Current and Future Research: 
HydroquinoneHydroquinone--Based Hydrophilic OligomersBased Hydrophilic Oligomers
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IEC = 3.31 meq/g

BPSH 100 HQSH100

IEC = 3.78 meq/g

• HQSH100 is more hydrophilic than BPSH100
( Higher χ parameter  Sharper Phase Separation)

• At the same IEC value, the HQSH100 system uses more 
hydrophobic segments lower water uptake

• Hydroquinone is cheaper than biphenol
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Synthesis of Multiblock CopolymerSynthesis of Multiblock Copolymer
HQSHHQSH--BPS Via Activated Hexafluorobenzene Coupling and BPS Via Activated Hexafluorobenzene Coupling and 

Mild Reaction ConditionsMild Reaction Conditions
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Conclusions Conclusions 

• Multiblock copolymers based on polyimides or hydrocarbon, partially  or 
highly fluorinated hydrophobic blocks  were  prepared by coupling 
activated aryl fluoride ends  with very hydrophilic BPSH-100 under mild 
reaction conditions to produce mechanically tough films and highly 
ordered morphologies by AFM and TEM. 

• Proton conductivity and water self diffusion coefficients increased with  
block lengths and with the “sharpness: of the nanophase separation

• Cooperation with LANL produced MEA’s with conductivity comparable 
to Nafion 212 at 100C and 40%RH

• Unequal block length materials with higher hydrophobic block lengths 
also show anisotropic swelling which correlates with the ease of self 
assembly, affording higher conductivity at lower RH values

• 80mS/cm on one block copolymer was demonstrated at 80%RH and 30C
at VT; lower behavior at Becktech could be rationalized by comparing 
conditioning procedures and extending the data range using independent 
VT, Giner and Becktech Data



Future ResearchFuture Research

• Continue ongoing efforts with LANL and others for 
understanding chemical structure-processing property 
relationships in PEM block copolymers and what controls 
conductivity at low RH

• Investigate new 6FK-0-HQ100 multiblock copolymers utilizing 
hexafluorobenzene mediated endlinking and mild reaction 
temperatures

• Swelling-deswelling features of the block copolymers and its 
possible connection to the most desirable modulus and water 
swelling values to maximize fuel cell durability 

• Scale up Selected Block Copolymer PEM’s, Continuously Cast into 
films via Reverse Roll Coating 

• Further Develop Film Casting Expertise for the Multi-Block 
Copolymers (modeling, time, temperature, substrate, 
concentrations, dispersion casting, morphology development 
relationships with conductivity)
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