

2008 DOE Hydrogen Program Review

Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

D. Gervasio (PI)

C.A. Angell, R. Marzke, J. Yarger (co-PI)

Arizona State University;

W. Youngs (co-PI)

University of Akron

June 9, 2008

Project ID #FC 17

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- January 15, 2006
- January 14, 2011
 - go/no go end of year 3
- 60% completed

Budget

- Total project funding \$1,500K
 - DOE: 80%, Contractor: 20%
- Funding received in FY06
 - \$300,000
- Funding for FY07
 - \$300,000
- Funding for FY08
 - \$200,000/\$300,000

Barriers

- Barriers addressed by this project from the HFCIT Program Multi-Year Program Plan
 - (A) Durability
 - (C) Electrode Performance

Partners

- Arizona State University
- University of Akron
- Boeing
- DOE Technology Development Manager: Terry Payne
- DOE Project Officer: Reginald Tyler
- ANL Technical Advisor: Thomas Benjamin

To make proton-conducting solid polymer electrolyte membrane (PEM) materials having:

- high proton conductance at high temperature (up to 120°C)
- effectively no co-transport of molecular species with proton
- reduction of fuel cell overvoltage
- good mechanical strength and chemical stability

Milestones

Month/Year	Milestone or Go/No-Go Decision
Jan-08	Milestone: 2 kinds of high temperature proton-conducting protic salts membranes were made into MEAs and tested in fuel cells: (i) leachable protic ionic liquid filled membrane and (ii) membranes with non-leachable salt moieties covalently and electrostatically bound to the polymer. Determine conductivity of membrane at 0 to 25% RH and the full range of temperature (-40 to 120° C) and compare to target of 0.1 S/cm. Determine conductivity in absence of free solvents.
May-08	Milestone: Complete initial round of MEA fabrication and testing with selected new polymers (1 done 3 more sent in progress) to provides external validation and information on the catalyst behavior under low RH conditions.
Nov-08	Milestone: Design targets defined and measured for conductivity (0.05 to 0.2S/cm) and gas permeability (< 2mA/cm ² measured with a catalyst coated membrane for both hydrogen and oxygen crossover) for high-temperature, low RH operation without external humidification.
Nov-08	Milestone: Design targets defined and measured for conductivity (0.05 to 0.2S/cm) and gas permeability (< 2mA/cm ² measured with a catalyst coated membrane for both hydrogen and oxygen crossover) for high-temperature, low RH operation without external humidification.

SYNTHESIS OF "DRY" PROTON ELECTROLYTE MEMBRANES (PEMS)

PEMs are being made based on "solvent free" protic ionic liquid (plL) concepts.

pILs can be *used to model membranes* (stability, conductivity) and to *act as a plasticizers* in membranes.

Acid and base moieties & polymers are varied to optimize properties in 2 kinds of PEMs.

- 1. pIL filled membranes (pIL act as leachable plasticizers)
- 2. Membranes with covalently and electrostatically non-leachable immobilized ions are being made.

CHARACTERIZATION

Proton conductivity characterized by electrochemical impedance spectroscopy (EIS) from -20 to 120°C

Thermal & oxidative stability of these electrolytes are measured by Thermal Gravimetry (TGA) from -20 to 120°C

Electrochemical stability and chemical reduction polarization are surveyed by cyclic voltammetry on Pt

Fuel cell stability and performance is estimated by short term steady state I/V curves

The mechanism of transport of protons, anions, and molecules investigated three NMR methods:

- 1. pulse field gradient NMR to determine the diffusivity of ions,
- 2. multipulse solid state NMR to measure the molecular motion and interactions of species in membranes,
- 3. electrochemical NMR to measure distribution of species during proton conduction.

PROTIC IONIC LIQUID (pIL) CONCEPTS

□ plLs belong to a new class of solvent-free proton-conducting electrolyte that can function at very high temperatures

□ A protic ionic liquid (plL) is made by transferring a proton from an acid to a base.

Energy Diagram for the EAN

(ethyl ammonium nitrate) plL with:

- proton transferred (Left)
- not transferred (Right),

Gurney proton energy level diagram. For any pair of levels, the stable entities are upper right and lower left. 6

Plan & Progress

Technical Accomplishments: Proton Conductivity

ASU membrane characterized by BEKKTECH and graphically reported here is:

Crosslinked hydroxyethyl cellulose (HEC) with 60wt% ethylammonium nitrate (EAN).

There are three more membranes soon to be characterized by BEKKTECH:

Ι.

- Crosslinked hydroxyethyl cellulose (HEC) containing 40wt% EAN,
- II. HEC containing 60wt% mixture of NH_4NO_3 and $NH_4CF_3SO_3$ (6:4),
- III. and crosslinked polysiloxane membrane containing 40wt% EAN

Technical Accomplishments: Proton Conductivity

Proton conductivity determined by BEKKTECH for ASU's Protic Salt Membrane

Crosslinked hydroxy ethyl cellulose (HEC) with 60wt% ethylammonium nitrate (EAN)

- is similar to the limited conductivity data obtained by ASU
- is representative of many of the Protic Salt Membranes with "sorbed" plasticizer and
- is comparable to the DoE target.

Technical Accomplishments: Fuel Cell Performance

Need to test in fuel cell

Best Protic Salt Membrane to date: composite polymer with 60 wt% Eutectic plasticizer

Polarization Curve for Hydrogen/ Oxygen Fuel Cell with a crosslinked hydroxyethyl cellulose membrane containing 20wt% polyammonium styrenesulfonic acid and 60wt% ionic mixture of 6 NH4NO3 and 4 NH4CF3SO3.

T= 125° C; P^{total}= 1 atm. P(H₂O)= 24 torr in H₂ and O₂ feeds.

Technical Accomplishments: Fuel Cell Performance

Another Protic Salt Membrane with 60wt% of Eutectic Salt Plasticizer

Polarization Curve for Hydrogen/Oxygen Fuel Cell with crosslinked hydroxyethyl cellulose membrane containing 60wt% ionic mixture of 6 moles NH_4NO_3 and 4 moles $NH_4CF_3SO_3$.

Cell was tested at 138°C with $P(H_2O) = 24$ torr in H_2 and O_2 feeds.

Technical Accomplishments

Protic Salt Membrane with 45wt% of Eutectic Salt Plasticizer

Impedance and Fuel cell Polarization with a crosslinked hydroxycellulose membrane filled with 45wt% of ionic liquid consisting of $NH_4NO_3:NH_4CF_3SO_3$ at 123°C. ETEK ELAT electrodes with 0.5 mg-Pt/cm2 and ambient pressure. NO HYDRATION.

Technical Accomplishments: non-leachable PEM 1

EIS for H⁺ conductivity

Fuel Cell I/V Curve

13

Impedance and polarization curves for "dry" non leachable membranes consisting of an Anodisc (Whatman alumina membrane, t = 60 micron, pore diameter = 100 micron) filled with solid polysiloxane with pendant sulfonic acid that fully neutralized with methylamine

Technical Accomplishments: Non-leachable PEM 2

Impedance and polarization curves for "dry" non leachable membranes consisting of an Anodisc (Whatman alumina membrane, t = 60 micron, pore diameter = 100 micron) filled with solid polysiloxane with pendant amine fully neutralized with methylsulfonic acid.

Technical Accomplishments: non-leachable PEMs

Two non-leachable protic salt polymer membranes

1. Pendant sulfonic acid polymer fully neutralized with methyl amine

Critique of non-leachable PEM

Pro: These data do illustrate the concept of using a *protic-salt membrane* as a "dry" proton-conductor and as a fuel cell membrane.

Con: The data indicate the membrane has limited stability (soft and water soluble) resulting in low performance (low open circuit voltage OCV, 0.45V, and low power, 2mW/cm²) in a fuel cell probably due to reactant crossover or/and possibly poisoning of Pt from decomposition of organics in this PEM.

What's next?

2. Pendant propyl amine polymer fully neutralized with methyl sulfonic acid

Technical Accomplishments: Poly-phenoxy-phosphazenes

1. With azole directly bound to phenoxy ring.

- i. hexakis(4-cyanophenoxy)cyclotriphosphazene
- ii. hexakis(4-tetrazolylphenoxy)cyclotriphosphazene
- iii. hexakis[4-(1,2,4-triazol-1-yl)phenoxy]cyclotriphosphazene
- iv. hexakis[4-(imidazol-1-yl)phenoxy]cyclotriphosphazene
- v. poly[bis(4-cyanophenoxy)phosphazene]
- vi. poly[bis(4-tetrazolylphenoxy)phosphazene]
- vii. poly[bis(4-(1,2,4-triazol-1-yl)phenoxy)phosphazene]
- viii. poly[bis(4-(imidazol-1-yl)phenoxy)phosphazene]

1.vi.

2. With methylene units between the azole and the phenoxy ring.

- i. hexakis(4-(1H-imidazol-1-ylmethyl)phenoxy)cyclotriphospazene
- ii. hexakis(4-(1H-1,24-triazol-1-ylmethyl)phenoxy)cyclotriphosphazene 4-(1H-1,24-triazol-1-ylmethyl)phenol
- iii. hexakis(4-(1H-5-methyltetrazol-1-ylmethyl)phenoxy)cyclotriphosphazene 4-(1H-5-methyltetrazol-1-ylmethyl)phenol
- iv. [N3P3(p-O-C6H4-CH2C3N2Cl2)6]
- v. [N3P3(p-O-C6H4-CH2OH)6]
- vi. [N3P3(p-O-C6H4-CHO)6]
- vii. [N3P3(p-O-C6H4-CH2OH)6]
- viii. 4-(1H-1,2,4-Triazol-1-ylmethyl)phenol
- ix. [N3P3(p-O-C6H4-CH2Br)6]

Syntheses of substituted poly phenoxy phosphazene have been developed to give low equivalent weight frameworks with a variety (imidazole, triazole and tetrazole) of pendant bases with a wide range of pK suitable for reacting with a variety of acids for optimizing proton conductivity of salt membranes.

Technical Accomplishments: Pt voltammetry under Ar, Stability Test

Observations: Cyclic Phosphazene 1.ii. adsorbs but does not decompose. Conclusion: Phenoxyphosphazene is suitable as a building block for a fuel cell polymer electrolyte membrane (PEM).

Technical Accomplishments: Pt voltammetry under O₂, Activity Test

Observations: Cyclic Phosphazene 1.ii. adsorbs but does not decompose even in the presence of Pt and O_2 . Adsorption diminishes O_2 reduction by ~ factor of 6. NOT a problem with phosphazene covalently immobilized in polymer.

Conclusion: Phenyoxyphosphazene is suitable as a building block for a 18 fuel cell polymer electrolyte membrane (PEM).

Technical Accomplishments: NMR

PFG Self-Diffusion Measurements on ILs

□PFG spin echo *D* measurements are limited by T_2 relaxation □PFG stimulated echo is limited by T_1 relaxation (in viscous ionic liquids T_1 >> T_2) □Stimulated echo *D* measurements on EAN resulted in identical *D* for all ¹H sites **Technical Accomplishments: NMR**

¹⁹F NMR T₁ Relaxation Enhancement to Probe O₂ Presence in ILs

 \square Because O₂ is paramagnetic it will greatly impact NMR T₁ relaxation

 \Box NMR T₁ measurements can be used to determine which ionic liquids and which sites in those ionic liquids are influenced by O₂ presence

TEABETI (10 F) showed a significant change in T_1 with O_2 present compared to TEATFSI (6 F)

This is attributed to the larger number of F in TEABETi

Technical Accomplishments: NMR

Activation energies, E^a, for all transport properties in triflate monohydrate, a model pIL

•That proton has 1.5x's higher diffusivity and lower E^a than F over the range of temperatures indicates H⁺ hopping can occur in a plL.

•Similar studies underway for another plL, fluoropyridinium triflate.

Technical Accomplishments: solution voltammetry of ferrocene

Determining proton activity in protic ionic liquids

Solution voltammetry of ferrocene in 4 ionic liquids

Ar purged, T = 25 °C, SR = 100mV/s, WE: Pt, CE: Pt, RE: RHE

 $E^{1/2}$ (ferrocene) vs RHE = 0.4, corresponds to a proton activity of 1 (1M in H⁺, or pH = 0) $E^{1/2}$ (ferrocene) vs RHE > 0.4, corresponds to a proton activity < 1 (more basic, pH > 0) $E^{1/2}$ (ferrocene) vs RHE < 0.4, corresponds to a proton activity > 1 (more acidic, pH < 0). 22

Future Work

- Continue to make and characterize 2 types of PIL-concept based PEM: i. ionic liquid (IL) filled PEMs consisting of:
 - ia. bi-phasic porous matrices filled with leachable ionic liquids
 - ib. leachable ionic liquids sorbed in polymers, and
 - ii. non-leachable PEMs consisting of novel polymers and polymer blends with no plasticizers which allow all acid and base moieties to be immobilized by covalent and electrostatic binding.
 - a. Polyphosphazenes: low EW, heat-melt formed and water insoluble membranes.
- Echem NMR and FTIR

- Continue pulse field gradient for H+ mobility of new materials
- NMR Imaging under H+ current ("NMR Hittorf") experiment to investigate distribution of species during proton conduction
- Voltammetry of Pt and other metal electrodes in PILs to investigate:
 - Pt-oxide formation
 - Adsorption of plL on Pt
 - Check for O₂ reduction activity on Pt and non-Pt catalysts
 - Measure potential shift versus standard potential of "solvent shielded" metal complexes (e.g., for ferrocene, $E^{o'} = 0.4V$ vs NHE) in a plL to determine proton activity in plL and its component acid and base. Gives a reliable prediction of pK and rational basis for finding $\Delta pK = 14$.

Summary

- Relevance: Help develop energy efficient fuel cell using protic salt electrolyte membranes
- Approach: Protic salt membrane electrolytes are non-aqueous proton conductors
 - No bulk water means little or no Pt-OH on surface, expect:
 - Lower overpotential for oxygen reduction and higher cell efficiency
 - Lower corrosion and Pt particle growth
 - Simplified Fuel Cell: no humidifier, smaller radiator
- **Technical accomplishments: Status of Protic Ionic Liquids (PILs)**
 - High Conductivity and Fuel Cell Activity Found in some PILs
 - Stable PILs found
 - Need to combine high activity and stability
 - Demonstrated proton conductivity and fuel cell performance in leachable and non-leachable membranes
 - Synthesized new poly-phosphazene polymer with pendant nitrogen heterocycles
 - Proposed Future Work:

- Heat-melt cast poly-phosphazene polymer with pendant nitrogen hetero cycles into a water insoluble membrane and then react with triflic (and other) acids to form protic salt membranes. Test H⁺-conductivity and fuel cell performance
- Continue NMR characterization of proton mobility.
- Finish NMR imaging of membranes under proton current.