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Overview

Budget
• FY04: $900k
• FY05: $950k
• FY06: $1000k
• FY07: $0 $300
• FY08: $300

Timeline
2001: Project started as Fuel Cell       

Stack Durability on Gasoline 
Reformate

2004: Changed focus PEM H2
Durability

2007: Ended.  Restarted at $300k

Barriers

Collaborators
• No Formal Partners
• ORNL (Karren More)
• LANL H2 Storage Center
• Analysis:

• Univ. New Mexico, Augustine            
Scientific, LANL MPA-MC

• Materials:
• Gore, SGL, Cabot Fuel Cells

• Durability
• Cost 
• Electrode Performance 



• Define degradation mechanisms
• Design materials with improved durability
• Identify and quantify factors that limit PEMFC Durability

• Measure property changes in fuel cell components during life testing
• Life testing of materials

• Examine testing conditions, incl. drive cycle
• Membrane-electrode durability
• Electrocatalyst activity and stability
• Electrocatalyst and GDL carbon corrosion
• Gas diffusion layer hydrophobicity
• Bipolar plate materials and corrosion products

• Develop/apply methods for accelerated and off-line testing
• Improve durability

Objectives:
Quantify and Improve PEM Fuel Cell Durability

2010-2015 Technical Target: 5000 hours Durability (with cycling) 



Approach to Durability Studies
• Fuel Cell MEA Durability Testing and Study

• Constant voltage/current/power and power cycling (drive cycle)
• VIR / cell impedance
• Catalyst active area
• Effluent water analysis

• in situ and post-characterization of MEAs, catalysts, GDLs
• SEM / XRF / XRD (ex situ and in situ) / TEM / ICP-MS / neutron scattering 
/ H2 adsorption / Inverse Gas Chromatography / Contact Angle / total
porosity / hydrophillic vs. hydrophobic porosity

• Develop and test with off-line and accelerated testing techniques
• Potential cycling 
• Environmental component aging, testing and characterization
• Component interfacial durability property measurements



Durability Testing Issues
• Testing times can be lengthy (and costly) 

– 5,000 hrs = ~ 7 months     (automotive target)
– 40,000 hrs = ~ 4.6 years   (stationary system target)
– Need relevant accelerated testing 
– Need to close ‘field / lab gap’ or ‘transfer function’

• Lab single cell ‘real’ stacks field data

• Operating variables effect not fully understood
– Many degradation mechanisms likely yet undefined
– Power transients - vehicle fuel cell/battery hybridization
– Transient power, temperature, RH
– Shut down / start-up

• Materials still being developed and improved
– Need relevant accelerated testing 



Comparison of Accelerated Testing Methods
USFCC Accelerated Catalyst Test #1

Step vs. Triangle Potential Cycle
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• Accelerated catalyst testing 
by potential cycling in H2 / Air

• Voltage cycling: 0.6 and 
0.96V (H2/Air)

Step Potential Cycle Triangle Potential Cycle

• H2/Air requires load bank for high current (can’t use potentiostat).
• Some MEAs do not reach 0.96V OCP with standard load control
• Triangle potential sweep shows much faster degradation
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Comparison of Accelerated Testing Protocols
Test #1. Voltage cycling: 0.6 and 0.96V (H2/air)

Step vs. Triangle Potential Cycle
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• OCP decreases with cycles
• Varies potential limits

• Increase in sample HFR 
• H2/Air cycling not just 

catalyst degradation

• Difficulties with this test being consistent and repeatable
• Does not separate catalyst durability from other components
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Shut-down/Start-up Effects

Modified from: Sathya Motupally, UTC Power

• ‘Reverse Current’ degradation
• Non-homogeneous mixture of H2 on anode 
• H2/air portion of cell drives ‘reverse current’ elsewhere



Stop-Start Cycling Effect on Carbon 
Corrosion
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• Operation
• OCV and dry air (250 sccm) 

continuously to cathode 
• Shut-down: anode dry air purge: 5 min.
• Start-up: flow dry H2 to anode: 5 min. 
• Measure CO2 (and CO) evolution at 

cathode by NDIR (Non-dispersive 
Infrared)

• Results
• Increasing anode gas change-over rate 

decreases CO2 evolution  
• More CO2 evolution at start-up 

compared to shut-down, 25 oC
• Small amounts of CO produced

Anode Purge Rate Comparison

Purge time (1 turn-over) = 3.7 sec

Purge time (1 turn-over) = 15.0 sec



Temperature Effect on Carbon Corrosion  
During Stop-Start Cycling
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•CO2 Evolution at Slow Purge Rate
•25 oC

• Higher at start-up than shut-down
• Much lower evolution than at 60 oC 

•60 oC
• Greatest evolution
• Higher evolution at shut-down

• 80 oC
• Non-zero steady-state evolution
• ~ Equal shut-down/start-up evolution
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GDL Durability
Contact Angle Changes 
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• GDLs lose hydrophobicity with aging
• Exposure to NaCl make GDLs more hydrophobic

• Also slows rate of water uptake
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Surface Analysis of GDL Material
• Confirm –COOH surface species

– Observe –OH and C=O IR 

• Confirm acyl chloride 
– Reduction of –OH, and/or C-Cl

MPA-MC, John Rau, Clay Macomber

DRIFTS Spectra of Aged GDL
(Diffuse Reflectance Infrared Transmission Spect.)

• -OH species identified
• Not yet satisfactorily identified 

surface species
• Using DRIFTS, will also explore 

Raman

-OH



Spatial Resolution of Durability:
Individual Fuel Cell Segments: VIRs over Time
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• Performance degradation greater at fuel cell inlet and near outlet

Segmented six parallel channel 
serpentine flow-field (left side) 
and segmented cathode 
hardware including gasket and 
current collector plates.
Segment-- 7.7 cm2

Total– 77 cm2

Segmented Cell Hardware



Crossover Current Density
Electrocatalyst Surface Area

Se
g 

01

Se
g 

02

Se
g 

03

Se
g 

04

Se
g 

05

Se
g 

06

Se
g 

07

Se
g 

08

Se
g 

09

Se
g 

10

C
ro

ss
ov

er
 c

ur
re

nt
 d

en
si

ty
at

 0
.2

5 
V

 / 
m

A
 c

m
-2

0

5

10

15

20

25

30

24 h 
96 h 
264 h 
432 h
600 h 
792 h 

Note: Because of segmented flowfield traversing 
in series, each subsequent segment cross-over is 
cumulative for all previous segments

• H2 cross-over per segment is  
~ constant

• Unclear about segment 10
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•Loss of electrocatalyst surface 
area (ECA) predominately at 
cathode outlet 
• (higher  water content)

•Loss of ECA at inlet doesn’t 
explain significant performance 
loss at inlet



RH Effect  on Membrane Degradation
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• Increase in H2 crossover at   
medium RHs (20-60%)
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• Stable OCP at 100% RH
• OCP degrades at 20 & 60% RH 

• More H2 and O2 crossover 
results in greater H2O2
formation

Hydrogen Crossover Open-Circuit (OCP)



Fluoride Emission Rate (FER)
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• Highest fluoride ion emission rate at 60% RH at anode and cathode
• 20% RH rate similar to 100% RH rate

Anode: H2, 500 sccm, 26psi; cathode: air, 1000 sccm, 26psi.



Durability Test with Hydrogen from 
Chemical Hydride

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3
Time / hr

C
ur

re
nt

 (A
) /

 V
ol

ta
ge

 (V
)

0

50

100

150

200

250

Fl
ow

ra
te

 / 
sc

cm

Cell Volts
Cell Amps
H2 Flowrate
Air Flowrate

H2 from Tank

H2 
f

Out of 
Hydrogen

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
Time / hr

C
ur

re
nt

 (A
) /

 C
el

l V
ol

ta
ge

 (V
)

Cell Volts
Cell Amps

Switched to H2 
from H2 
Storage 
Material

H2 from 
Tube Trailer

(small 
recovery)

Tube Trailer H2

5 cm2 Cell
80 oC
100 % Inlet 

Cell reaches 
zero current 
within ~ 3 
hours

Test #1 Test #2

• Immediate decrease in cell 
performance upon switching to 
H2 from H2 Storage Material

• Complete failure in 3 hours
• Gas analysis suggests B-N 

species

• Cell gradually recovered ~ 80% 
over several days

• Used carbon filter in H2 line
• No immediate decrease in 

performance
• Simple filtration may work

Supporting LANL H2 Storage COE



Milestones
PEM Fuel Cell Durability

Mon Yr Milestone 
May 07 Shut-down / start-up protocol comparison of degradation 

rates 
Dec 07 Electrocatalyst particle size growth measurements 

performed on 2010 and 2015 DOE target loadings
Jan 08 Comparison of off-line potential square-wave cycling 

with fuel cell operation with square-wave cycling

Jun 08 Segmented Cell Operation
Sept 08 Peroxide formation results as function of Temperature, 

Operating potential and Electrocatalyst

Carbon
corrosion

DOE/USFCC
H2/Air
H2/N2

S.S.



Summary - Durability Testing
• Durability testing remains difficult and time intensive

• Time constraints led to accelerated type testing
• Decay mechanisms required to define accelerated test protocols

• Need to understand all degradation mechanisms
• Need to correlate accelerated testing with real fuel cell life

• Operational variables important to component durability
• RH, temperature, potential and potential cycling
• Shut-down / start-up variations important to corrosion

• Components
• Electrocatalyst (Particle growth)
• Membrane (Chemical and mechanical degradation)
• GDL (Hydrophobicity loss/gain, porosimetry losses)



• Not sure of future funding status (>FY08)
• MEA durability measurements

– Drive cycle testing, operating effects (shut-down), spatial distribution
– Identification of degradation mechanisms

• Accelerated testing and durability correlation
– Correlate accelerated durability tests to fuel cell performance
– Continue to develop accelerated tests for degradation mechanisms

• Component interfacial durability property measurements
– GDL / MEA catalyst layer material interfacial contact

Remainder of FY08:
– Evaluate surface species leading to hydrophobicity changes 

• (both decreasing and increasing)
– Evaluate mechanisms leading to change in hydrophobicity

• Examine Nafion / PTFE degradation and carbon bonding 

Future Activities
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