2008 DOE Hydrogen Program Review June 9-13, 2008

Rod Borup, John Davey, Hui Xu, Axel Ofstad, Fernando Garzon, Bryan Pivovar

Los Alamos National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

FC26

os Alamos

Overview

Timeline

- 2001: Project started as Fuel Cell Stack Durability on Gasoline Reformate
- 2004: Changed focus PEM H₂ Durability
- 2007: Ended. Restarted at \$300k

Budget

- FY04: \$900k
- FY05: \$950k
- FY06: \$1000k
- FY07: \$0 → \$300
- FY08: \$300

Barriers

- Durability
- Cost
- Electrode Performance

Collaborators

- No Formal Partners
- ORNL (Karren More)
- LANL H₂ Storage Center
- Analysis:
 - Univ. New Mexico, Augustine Scientific, LANL MPA-MC
- Materials:
 - Gore, SGL, Cabot Fuel Cells

os Alamos

for Hydroge and Fuel Cel Research

Objectives:

Quantify and Improve PEM Fuel Cell Durability

2010-2015 Technical Target: 5000 hours Durability (with cycling)

- Define degradation mechanisms
- Design materials with improved durability
- Identify and quantify factors that limit PEMFC Durability
 - Measure property changes in fuel cell components during life testing
 - Life testing of materials
 - Examine testing conditions, incl. drive cycle
 - Membrane-electrode durability
 - Electrocatalyst activity and stability
 - Electrocatalyst and GDL carbon corrosion
 - Gas diffusion layer hydrophobicity
 - Bipolar plate materials and corrosion products
 - Develop/apply methods for accelerated and off-line testing
- Improve durability

Approach to Durability Studies

• Fuel Cell MEA Durability Testing and Study

- Constant voltage/current/power and power cycling (drive cycle)
 - VIR / cell impedance
 - Catalyst active area
 - Effluent water analysis
- *in situ* and post-characterization of MEAs, catalysts, GDLs

• SEM / XRF / XRD (*ex situ* and *in situ*) / TEM / ICP-MS / neutron scattering / H₂ adsorption / Inverse Gas Chromatography / Contact Angle / total porosity / hydrophillic vs. hydrophobic porosity

• Develop and test with off-line and accelerated testing techniques

- Potential cycling
- Environmental component aging, testing and characterization
- Component interfacial durability property measurements

Durability Testing Issues

- Testing times can be lengthy (and costly)
 - 5,000 hrs = \sim 7 months (automotive target)
 - 40,000 hrs = \sim 4.6 years (stationary system target)
 - Need relevant accelerated testing
 - Need to close 'field / lab gap' or 'transfer function'
 - Lab single cell → 'real' stacks → field data
- Operating variables effect not fully understood
 - Many degradation mechanisms likely yet undefined
 - Power transients vehicle fuel cell/battery hybridization
 - Transient power, temperature, RH
 - Shut down / start-up
- Materials still being developed and improved
 - Need relevant accelerated testing

Comparison of Accelerated Testing Methods

USFCC Accelerated Catalyst Test #1

Step vs. Triangle Potential Cycle

Voltage / V

and Fuel Celi

Research

• H₂/Air requires load bank for high current (can't use potentiostat).

Some MEAs do not reach 0.96V OCP with standard load control

Los Alamos

Ó

Triangle potential sweep shows much faster degradation

Comparison of Accelerated Testing Protocols

Test #1. Voltage cycling: 0.6 and 0.96V (H_2/air)

Step vs. Triangle Potential Cycle

Triangle Potential Cycle **Step Potential Cycle** OCP vs. Cycles OCP vs. Cycles OCP decreases with cycles 0.95 0.95 Varies potential limits 0.92 0.92 0.890.800.86 **C** 0.89 **C** 0.89 0.86 Increase in sample HFR H₂/Air cycling not just 0.83 0.83 catalyst degradation 0.80 0.80 5000 10000 15000 20000 0 Λ 5000 10000 15000 20000 VIR curves over 16,000 Cycles # Cvcles VIR curves over 8,000 Cycles 1.0 0.040 1.0 0.9 0.035 0.9 0.035 0.8 0.8 0.030 > 0.7 0.030 0.7 Voltage / V -0 Cvcle 0.025 400 Cycles 0.025 0.6 600 Cvcle 0.020 0.020 2800 Cycle 0.5 T 000 Cycle: 3000 Cvcle 0.015 0.4 16000 Cvcle 0.015 HFR 0 Cycle 0.3 HFR 400 Cvc 0.010 UED 1600 CV 0.2 0.010 0.2 HER 4000 Curles 0.005 0.1 HFR 8000 Cycles 0.005 0.1 -HFR 16000 Cycles 0.0 0.000 0.0 0.000 0.5 1.0 0.0 1.5 0.0 0.5 10 1.5 Current Density / A/cm² Current Density / A/cm² Difficulties with this test being consistent and repeatable Does not separate catalyst durability from other components vdrogen and Fuel Cell Los Alamos Ó Research

Shut-down/Start-up Effects

- 'Reverse Current' degradation
 - Non-homogeneous mixture of H₂ on anode
 - H₂/air portion of cell drives 'reverse current' elsewhere

Stop-Start Cycling Effect on Carbon Corrosion

Anode Purge Rate Comparison

Purge time (1 turn-over) = 3.7 sec25 Anode: CO2 (ppm) **Outlet / bbm** 15 10 Flowrate: 400 sscm H₂ Purge: 200 sccm Air 50 cm2 CO2 Start-up 25 °C 5 131 25.5Shut-down 500 1000 1500 2000 2500 Time / sec Research

Operation

- OCV and dry air (250 sccm) continuously to cathode
- Shut-down: anode dry air purge: 5 min.
- Start-up: flow dry H_2 to anode: 5 min.
- Measure CO₂ (and CO) evolution at cathode by NDIR (Non-dispersive Infrared)

Results

- Increasing anode gas change-over rate decreases CO₂ evolution
- More CO₂ evolution at start-up compared to shut-down, 25 °C
- Small amounts of CO produced

Temperature Effect on Carbon Corrosion During Stop-Start Cycling

1500

1000

Time / sec

2000

2500

100 sscm H₂

nstitute

and Fuel Cell

Research

500

Purge: 50 sccm Air

50 cm²

CO²

Ω

0

- <u>CO₂ Evolution at Slow Purge Rate</u> •25 °C
 - Higher at start-up than shut-down
 - Much lower evolution than at 60 °C
 - •60 °C
 - Greatest evolution
 - Higher evolution at shut-down
 - 80 °C
 - Non-zero steady-state evolution
 - ~ Equal shut-down/start-up evolution

ó

Los Alamos

GDL Durability Contact Angle Changes

- GDLs lose hydrophobicity with aging
- Exposure to NaCl make GDLs more hydrophobic
 - Also slows rate of water uptake

The Institute for Hydroger and Fuel Cell

Research

Surface Analysis of GDL Material

- Confirm –COOH surface species
 - Observe –OH and C=O IR
- Confirm acyl chloride

and Fuel Cel

Research

- Reduction of –OH, and/or C-Cl

DRIFTS Spectra of Aged GDL (Diffuse Reflectance Infrared Transmission Spect.)

- -OH species identified
- Not yet satisfactorily identified surface species
- Using DRIFTS, will also explore Raman

Spatial Resolution of Durability: Individual Fuel Cell Segments: VIRs over Time

Performance degradation greater at fuel cell inlet and near outlet

Los Alamos

Crossover Current Density Electrocatalyst Surface Area

- H₂ cross-over per segment is
 ~ constant
- Unclear about segment 10

Note: Because of segmented flowfield traversing in series, each subsequent segment cross-over is cumulative for all previous segments

- Loss of electrocatalyst surface area (ECA) predominately at cathode outlet
 - •(higher water content)
- Loss of ECA at inlet doesn't explain significant performance loss at inlet

RH Effect on Membrane Degradation

 Increase in H₂ crossover at medium RHs (20-60%)

- Stable OCP at 100% RH
- OCP degrades at 20 & 60% RH
 - More H₂ and O₂ crossover results in greater H₂O₂ formation

H2, 500 sccm, 26psi; cathode: air/N2, 1000 sccm, 26psi.

Fluoride Emission Rate (FER)

Highest fluoride ion emission rate at 60% RH at anode and cathode
20% RH rate similar to 100% RH rate

Anode: H2, 500 sccm, 26psi; cathode: air, 1000 sccm, 26psi.

nstitute

and Fuel Cell

Research

Durability Test with Hydrogen from Chemical Hydride

- Immediate decrease in cell performance upon switching to H₂ from H₂ Storage Material
- Complete failure in 3 hours
- Gas analysis suggests B-N

species

Research

 Cell gradually recovered ~ 80% over several days

Los Alamos

- Used carbon filter in H₂ line
- No immediate decrease in performance
- Simple filtration may work

Supporting LANL H₂ Storage COE

Milestones PEM Fuel Cell Durability

Mon Yr	Milestone		
May 07	Shut-down / start-up protocol comparison of degradation rates	✓	Carbon corrosion
Dec 07	Electrocatalyst particle size growth measurements performed on 2010 and 2015 DOE target loadings	 ✓ 	
Jan 08	Comparison of off-line potential square-wave cycling with fuel cell operation with square-wave cycling	 ✓ 	DOE/USFCC H2/Air H2/N2
Jun 08	Segmented Cell Operation		S.S.
Sept 08	Peroxide formation results as function of Temperature, Operating potential and Electrocatalyst		

Los Alamos

ó

Summary - Durability Testing

- Durability testing remains difficult and time intensive
 - Time constraints led to accelerated type testing
 - Decay mechanisms required to define accelerated test protocols
 - Need to understand all degradation mechanisms
 - Need to correlate accelerated testing with real fuel cell life
- Operational variables important to component durability
 - RH, temperature, potential and potential cycling
 - Shut-down / start-up variations important to corrosion
- Components
 - Electrocatalyst (Particle growth)
 - Membrane (Chemical and mechanical degradation)
 - GDL (Hydrophobicity loss/gain, porosimetry losses)

Future Activities

- Not sure of future funding status (>FY08)
- MEA durability measurements
 - Drive cycle testing, operating effects (shut-down), spatial distribution
 - Identification of degradation mechanisms
- Accelerated testing and durability correlation
 - Correlate accelerated durability tests to fuel cell performance
 - Continue to develop accelerated tests for degradation mechanisms
- Component interfacial durability property measurements
 - GDL / MEA catalyst layer material interfacial contact
- Remainder of FY08:
 - Evaluate surface species leading to hydrophobicity changes
 - (both decreasing and increasing)
 - Evaluate mechanisms leading to change in hydrophobicity

Examine Nafion / PTFE degradation and carbon bonding

Los Alamos