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Overview

Timeline Barriers
2001: Project started as Fuel Cell  Durability
Stack Durability on Gasoline » Cost
Reformate * Electrode Performance
2004: Changed focus PEM H,
Durability
2007: Ended. Restarted at $300k
Collaborators
BUdget * No Formal Partners
« FYO04: $900k « ORNL (Karren More)
- FYO05: $950k * LANL H, Storage Center
+ FY06: $1000k * Analysis: | |
. FYO07: $0 > $300 « Univ. New Mexico, Augustine

Scientific, LANL MPA-MC

« FYO08: $300 « Materials:

* Gore, SGL, Cabot Fuel Cells
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Objectives:
Quantify and Improve PEM Fuel Cell Durability

2010-2015 Technical Target: 5000 hours Durability (with cycling)

* Define degradation mechanisms
* Design materials with improved durability

* Identify and quantify factors that limit PEMFC Durability

» Measure property changes in fuel cell components during life testing
» Life testing of materials
« Examine testing conditions, incl. drive cycle
 Membrane-electrode durability
 Electrocatalyst activity and stability
* Electrocatalyst and GDL carbon corrosion
» Gas diffusion layer hydrophobicity
* Bipolar plate materials and corrosion products
» Develop/apply methods for accelerated and off-line testing

* Improve durability
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Approach to Durability Studies

* Fuel Cell MEA Durability Testing and Study

 Constant voltage/current/power and power cycling (drive cycle)
* VIR / cell impedance
 Catalyst active area
 Effluent water analysis

* In situ and post-characterization of MEAs, catalysts, GDLs

« SEM / XRF / XRD (ex situ and in situ) / TEM / ICP-MS / neutron scattering
/ H, adsorption / Inverse Gas Chromatography / Contact Angle / total
porosity / hydrophillic vs. hydrophobic porosity

» Develop and test with off-line and accelerated testing techniques
* Potential cycling
» Environmental component aging, testing and characterization
« Component interfacial durability property measurements
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Durability Testing Issues

« Testing times can be lengthy (and costly)
— 5,000 hrs =~ 7 months  (automotive target)
— 40,000 hrs = ~ 4.6 years (stationary system target)
— Need relevant accelerated testing

— Need to close ‘field / lab gap’ or ‘transfer function’
» Lab single cell 2 ‘real’ stacks -2 field data

« QOperating variables effect not fully understood
— Many degradation mechanisms likely yet undefined
— Power transients - vehicle fuel cell/battery hybridization
— Transient power, temperature, RH
— Shut down / start-up

« Materials still being developed and improved
— Need relevant accelerated testing
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Comparison of Accelerated Testing Methods
USFCC Accelerated Catalyst Test #1

Voltage / V

Current

Step vs, Triangle Potential Cycle
Step Potential Cycle Triangle Potential Cycle
125 1.25
: » Accelerated catalyst testing !
| by potential cycling in H, / Air 3 =
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« H,/Air requires load bank for high current (can’t use potentiostat).
« Some MEAs do not reach 0.96V OCP with standard load control
— memaadiangle potential sweep shows much faster degradation A
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Comparison of Accelerated Testing Protocols
Test #1. Voltage cycling: 0.6 and 0.96V (H,/air)

Step vs, Triangle Potential Cycle
Step Potential Cycle Triangle Potential Cycle
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« Difficulties with this test being consistent and repeatable
§Thalnsmm! Does not separate catalyst durability from other compcments
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Shut-down/Start-up Effects

 ‘Reverse Current’ degradation
* Non-homogeneous mixture of H, on anode
» H,/air portion of cell drives ‘reverse current’ elsewhere

0,+4H* +4e— 2H,0  C+2H,0 — CO, + 4H* + de-

No net current
|

Reglon exposed Reglon in WhICh H2 has not j
to hydrogen displaced air

H,— 2H* + 2¢ O, + 4H* + 4¢ — 2H,0

= I nsise Modified from: Sathya Motupally, UTC Power
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Stop-Start Cycling Effect on Carbon

Corrosion

Anode Purge Rate Comparison

Purge time (1 turn-over) = 15.0 sec
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« Operation

« OCV and dry air (250 sccm)
continuously to cathode

« Shut-down: anode dry air purge: 5 min.

» Start-up: flow dry H, to anode: 5 min.

* Measure CO, (and CO) evolution at
cathode by NDIR (Non-dispersive
Infrared)

* Results
* Increasing anode gas change-over rate
decreases CO, evolution
* More CO, evolution at start-up
compared to shut-down, 25 °C
« Small amounts of CO produced

A
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CO: Outlet Conc. / ppm

Temperature Effect on Carbon Corrosion

During Stop-Start Cycling

40
25 °C — CO?2 0
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Contact Angle (deg)

GDL Durability
Contact Angle Changes

Contact angles with aging Contact angles with NaCl exposure
(Single Fiber Measurements) (Paper Sessile Drop Measurements)
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» GDLs lose hydrophobicity with aging
« Exposure to NaCl make GDLs more hydrophobic
* Also slows rate of water uptake
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Surface Analysis of GDL Material

 Confirm ~COOH surface species ¢ | g
o c :
— Observe —OH and C=0 IR 8 C\ o N2 o A\ 0
= c oxidation Y, \0 —_— C\
« Confirm acyl chloride s/ c|: \ J ©
) 0
— Reduction of —OH, and/or C-Cl o |3 Hydgen/ oL 3
bondin H H
Carbon _sgrfzce ?tarts Carbon SL?rface oxidation t!mu:gggwg groups
DRI FTS SpeCtra Of Aged GDL Teflon treatment Lefgzrtgon surface gronpe hydrophébic surface

(Diffuse Reflectance Infrared Transmission Spect.)

VAged GOL-8 porous difference new - Thu hiar 20 145551 2008 (GWT-07 007 12 Teflon G4

0.0260 - . ) ) ) c oz
. 02 from air, hitial scan to see if ORIFT S was possible, didn't purge orHelt 151 Teflon

OH fmm Water

- | -OH

» -OH species identified

 Not yet satisfactorily identified
surface species

« Using DRIFTS, will also explore

Raman
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Spatial Resolution of Durability:

Individual Fuel Cell Segments: VIRs over Time
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» Performance degradation greater at fuel cell inlet and
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Crossover Current Density
Electrocatalyst Surf Ar

30 100 1
- 90 {
2 o 01
8" 5 701
S > o %0 :
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° - N
T —
« H, cross-over per segment is *Loss of electrocatalyst surface
~ constant area (ECA) predominately at
- Unclear about segment 10 cathode outlet

*(higher water content)
Note: Because of segmented flowfield traversing *Loss of ECA at inlet doesn't

in series, each subsequent segment cross-over is explain Significant performance
cumulative for all previous segments loss at inlet
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RH Effect on Membrane Degradation

Hydrogen Crossover
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* Increase in H, crossover at
medium RHs (20-60%)

Open-Circuit (OCP)
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» Stable OCP at 100% RH
 OCP degrades at 20 & 60% RH
* More H, and O, crossover
results in greater H,0O,
formation

H2, 500 sccm, 26psi; cathode: air/N2, 1000 sccm, 26psi.
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Fluoride Emission Rate (FER)
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 Highest fluoride ion emission rate at 60% RH at anode and cathode
« 20% RH rate similar to 100% RH rate
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Durability Test with Hydrogen from

Chemical Hydride
Test #1 Test #2

1.2 0.8 250
S Switched to H2 " Cell Volts
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o 1 \>.¢ BT N . H2 Flowrate| 200
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908 £ s g
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+ Cell Volts —_ H2 from Tank - ©
=~ — Coll Am H2 from < -~ 1 q00E
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* Immediate decrease in cell  Cell gradually recovered ~ 80%
performance upon switching to over several days

H, from H, Storage Material Used carbon filter in H, line
« Complete failure in 3 hours No immediate decrease in
« (Gas analysis suggests B-N performance

_species Simple filtration mawork
%fﬂrHyﬂwn - -"'j
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Milestones
PEM Fuel Cell Durability

= The Institute
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— and Fuel Cell
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Mon Yr | Milestone
May 07 | Shut-down / start-up protocol comparison of degradation v Carbon
rates corrosion
Dec 07 | Electrocatalyst particle size growth measurements v
performed on 2010 and 2015 DOE target loadings
Jan 08 Comparison of off-line potential square-wave cycling| pog/Usece
with fuel cell operation with square-wave cycling v H2/Air
H2/N2
Jun 08 | Segmented Cell Operation v ss
Sept 08 | Peroxide formation results as function of Temperature,
Operating potential and Electrocatalyst
A,
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Summary - Durability Testing

 Durability testing remains difficult and time intensive
* Time constraints led to accelerated type testing
« Decay mechanisms required to define accelerated test protocols
* Need to understand all degradation mechanisms
* Need to correlate accelerated testing with real fuel cell life

« Operational variables important to component durability
* RH, temperature, potential and potential cycling
« Shut-down / start-up variations important to corrosion

« Components
 Electrocatalyst (Particle growth)
* Membrane (Chemical and mechanical degradation)
« GDL (Hydrophobicity loss/gain, porosimetry losses)
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Future Activities

* Not sure of future funding status (>FY08)

 MEA durability measurements
— Drive cycle testing, operating effects (shut-down), spatial distribution
— ldentification of degradation mechanisms

» Accelerated testing and durability correlation
— Correlate accelerated durability tests to fuel cell performance
— Continue to develop accelerated tests for degradation mechanisms

« Component interfacial durability property measurements
— GDL / MEA catalyst layer material interfacial contact

Remainder of FY08:

— Evaluate surface species leading to hydrophobicity changes
* (both decreasing and increasing)
— Evaluate mechanisms leading to change in hydrophobicity
~memsiae. =X@Mine Nafion / PTFE degradation and carbon bond

i
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