Nitrided Metallic Bipolar Plates

M.P. Brady (project lead) <u>P. F. Tortorelli</u> Oak Ridge National Laboratory Oak Ridge, TN 37831-6115 contact: <u>bradymp@ornl.gov</u>

Project ID FC 27

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Managed by UT-Battelle for the Department of Energy

Timeline

- Start: May 1, 2007
- Finish: Sept. 30, 2009
- ~30% complete

Budget

- Total project funding
 - \$4530k DOE share
 - \$400k Contractor share
- \$1200 k received in May 07
- \$1200 k expected for FY 08
- 5 month delay for 1st increment of FY08 funding (Feb 08)
- Delays/complications in subcontracting (~Sept 07 start)

Barriers

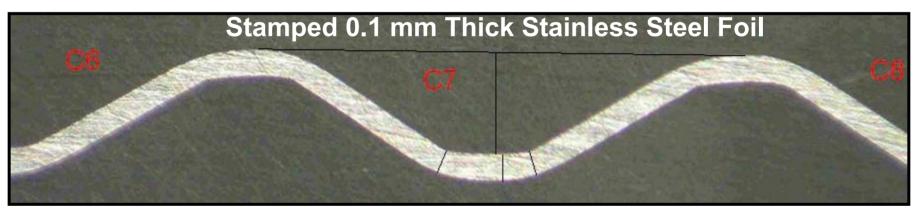
- Metallic bipolar plate durability and cost
- 2010 Targets
 - resistivity < 10 mohm-cm²
 - corrosion < 1 $\times 10^{-6}$ A/cm²
 - $\cos t < $5/kW$

Partners

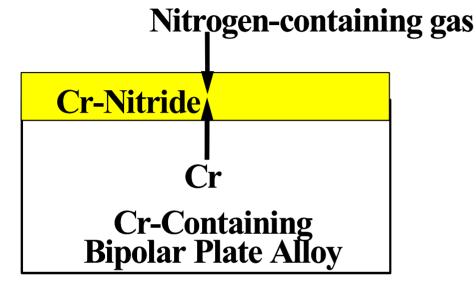
- ORNL (Lead)
- Allegheny Ludlum
- Arizona State University
- GenCell Corp
- LANL
- NREL

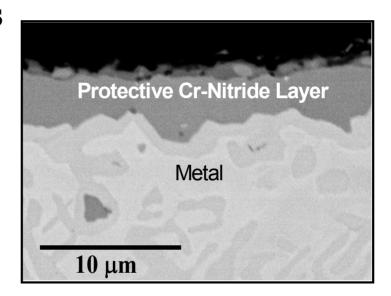
Objective: Demonstrate Nitridation to Protect Stamped Metallic Bipolar Plates

Overall Goal: Demonstrate potential for metallic bipolar plates to meet automotive durability goals at cost of < \$5/kW


- Milestone 1: No significant warping or embrittlement of stamped 18 cm² active area plates by nitriding- go/no go 1
- Milestone 2: Single-cell fuel cell test performance for 18 cm² stamped and nitrided metallic bipolar plates equivalent to that of graphite (~1000 h, cyclic)- go/no go 2
- Milestone 3: 10 cell stack test of 250 cm² stamped and nitrided metallic bipolar plates under automotive drive-cycle conditions (~2000 h) -project end

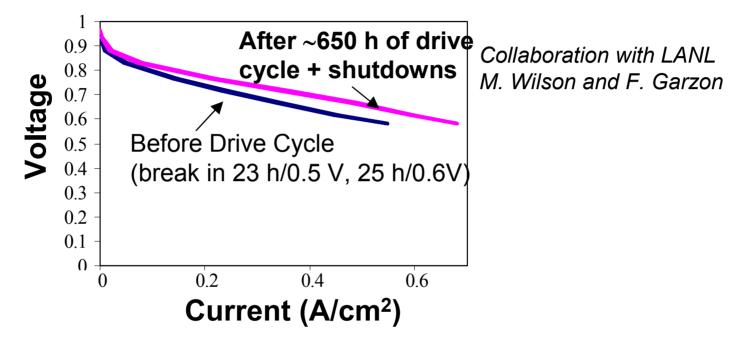
Stainless Steels As Bipolar Plates Have Some Advantages Over Graphite Composites


Better mechanical properties


-can be stamped: *low cost/high volume manufacturing* -can be made thin: *0.1 mm vs ~1 mm composite plates* -not susceptible to brittle failure: *high graphite loadings in composites may result in brittleness*

- Lower gas permeation: better at keeping H₂ and air streams separate, But...
- Borderline corrosion resistance and high contact resistance

Approach: Thermally Grown Cr-Nitride for Corrosion Protection/Low Contact Resistance



- •Nitrides are corrosion resistant with low surface contact resistance
- •Surface conversion, <u>not a deposited coating</u>: High temperature favors reaction of all exposed metal surfaces

-No pin-hole defects (other issues to overcome) -Amenable to complex geometries (flow field grooves)

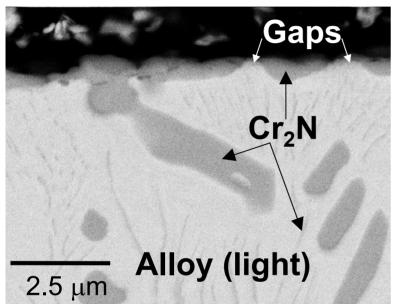
•Stamp then nitride: Industrially established and cheap

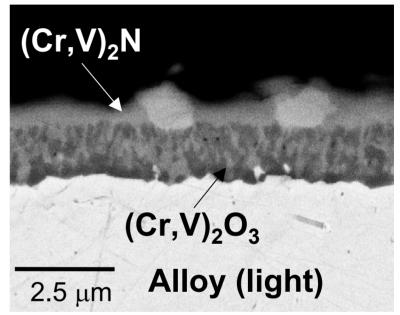
Good Single-Cell Drive-Cycle Durability Test Results for Model Nitrided Ni-50Cr Plates

<u>1160 h of drive-cycle testing</u> (after initial 500 h/0.7V/80°C test screening)
 -0.94V/1 min; 0.60V/30 min; 0.70V/20 min; 0.50V/20 min
 -additional 24 full shutdowns superimposed

•No performance degradation/No attack of the Cr-nitride -trace level (2x10⁻⁶ g/cm²) of Ni detected in MEA, suspect local CrNiN spots

Need Fe-Base Stainless Steel to Meet \$5/kW Bipolar Plate Cost Goals for Auto Applications


- Ni-Cr Base Alloys in Range of ~\$20-40/lb: far too costly
- Focus on Ferritic and Lower-Ni Duplex/Austenitic Stainless Steels, ~\$2-10/lb
- Meeting Cost Goals Will Depend on Use of Thin Stamped Alloy Foil (less material/lower cost)

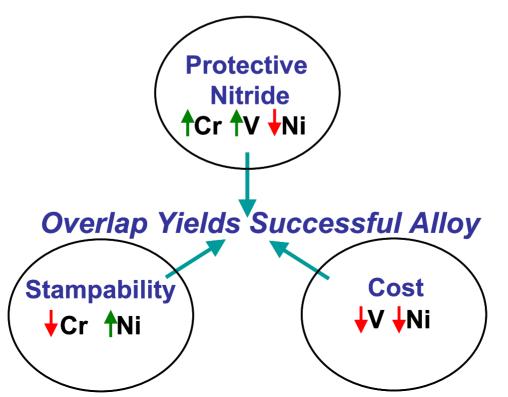

Pre-Oxidation/Nitridation Yields Protective Cr-Nitride Surface on Model Fe-27Cr-6V Alloy

Nitrided Fe-27Cr

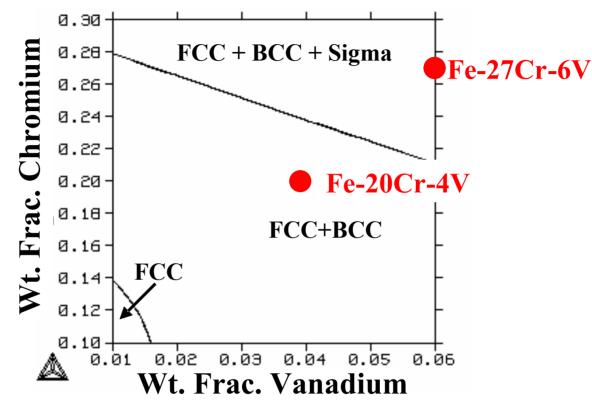
•N₂ readily penetrates Fe-Cr
•Dense Cr-nitride surface not formed
•Poor corrosion resistance

Pre-Oxidized/Nitrided Fe-27Cr-6V

Initial oxide keeps N₂ at surface
V in Cr-oxide makes readily nitrided
Excellent corrosion resistance and conductivity demonstrated


•Approach demonstrated for nitriding Fe-Cr base alloys

Scale-Up Considerations Focus of New Effort


Model Fe-27Cr-6V alloy not viable for scale up

-limited ductility and borderline cost -potentially embrittled by σ phase formation during nitridation

Challenge: Co-optimize ductility (for stamping) and low alloy cost with protective Cr-nitride surface formation

Computational Thermo. Guided Alloy Design Calculated Phase Equilibria for Fe-Cr-V + 5 wt.% Ni at 800°C

•Brittle σ phase formation during nitriding a concern

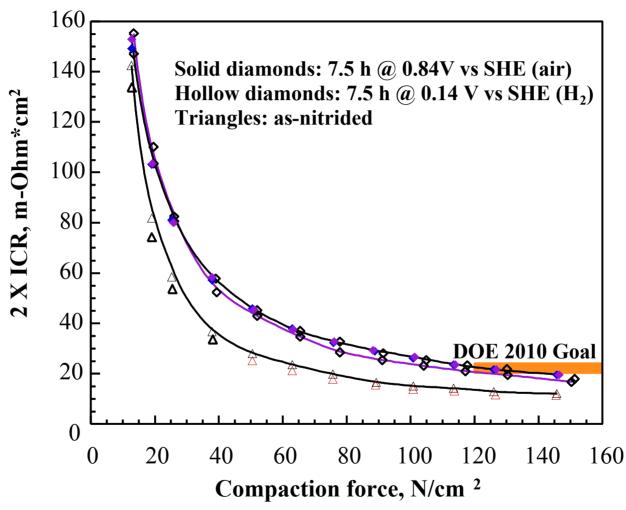
•Ferritic (BCC), duplex (FCC+BCC), austenitic (FCC) compositions computationally explored as a function of Fe, Cr, V, and Ni content

-ferritic lowest cost but lowest ductility -austenitic best ductility but highest cost due to Ni content

Protective Cr-Nitride Base Surface Successfully Formed on Ferritic Fe-20Cr-(2-4)V Wt.%

Static Polarization in H₂-Purged 1M H₂SO₄+2 ppm F⁻/70°C/0.14 V vs SHE

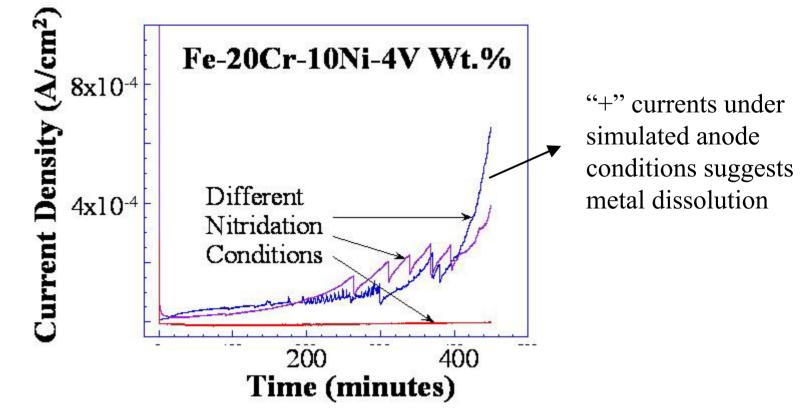
- Highly-aggressive simulation for anode-side environment
- Higher V content alloys more robust


 -readily repeated with cast and nitrided Fe-20Cr-4V
 -some reproducibility issues with cast and nitrided Fe-20Cr-2V
 11

Nitrided Fe-20Cr-4V Surface Similar to That Formed on Nitrided Fe-27Cr-6V

AES Depth Profiles After Polarization for 7.5h in Aerated ¹M H₂SO₄+2 ppm F⁻/70°C/0.84 V vs SHE (<u>Highly aggressive</u> simulation for cathode-side environment) Fe-27Cr-6V Fe-20Cr-4V Atomic concentration, % \$ 80 Femm Atomic concentration, Fe 60 60 40 Cr 40 20 20 0 Milana 100 200 120 40 **Sputtering time (minutes) Sputtering time (minutes)**

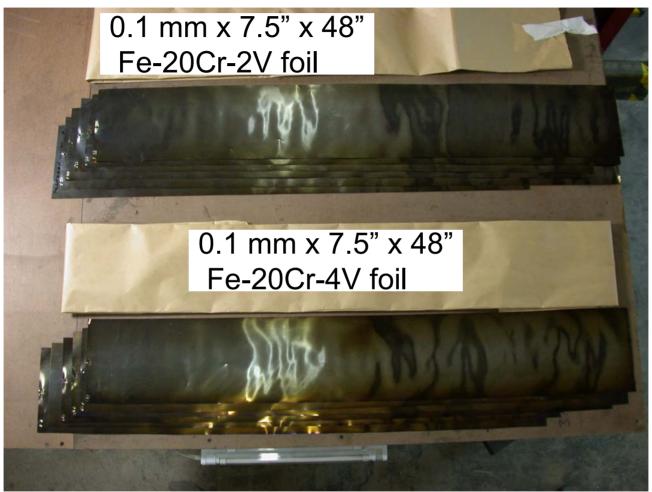
- Pre-oxidation/nitridation yields mixed nitride + oxide structure -similar surface before/after polarization
- Surface is free of Fe: correlates with good PEMFC behavior in our studies


Nitrided Fe-20Cr-4V Meets DOE Interfacial Contact Resistance Goal

•10⁻⁵ to 10⁻⁶ A/cm² range current densities typically observed •Testing in 1M H_2SO_4 + 2ppm F⁻ (typically, 0.001M H_2SO_4) ¹³

Ni Additions Make Protective Cr-Nitride Base Surface Harder to Achieve

Static Polarization in H₂-Purged 1M H₂SO₄+2 ppm F⁻/70°C/0.14 V vs SHE



•Ni additions may yield better foil manufacture and stampability

•Drawback is increased cost and difficulty in forming nitride surface

•Results to date: possible to form desired nitride with 5-10% Ni 14

Allegheny Ludlum Successfully Produced Developmental Ferritic Alloy Foil

•Developmental duplex and austenitic V-modified Fe-Cr alloy foil also successfully manufactured ¹⁵

20 Cr Ferritics Performed Well in GenCell Stamping Assessment

Alloy	Description	Flow-Field Stampabilit (channel depth/foil thick
444	Fe-18Cr-2Mo Ferritic	
316L	Fe-18Cr-12Ni Austenitic	uid 5.25
904L	Fe-20Cr-25Ni-5Mo Aust.	5.25 5.25 5.25
Fe-15Cr-10Ni-3V	Near-Austenitic	5.25
Fe-20Cr-4V	Ferritic	Piel 4.38 4.25
Fe-20Cr-2V-5Ni	Duplex	<u> </u>
Fe-20Cr-2V	Ferritic	_ 4.13
2205	Fe-22Cr-5Ni-3Mo Duplx.	3.75
E-brite	Fe-26Cr-1Mo Ferritic	<u> </u>

•18 cm² active area parallel flow-field stamping of commercial and developmental stainless steel foils ¹⁶

No Embrittlement and Little Warping of Stamped 18 cm² Active Area Plates on Nitriding Fe-20Cr-4V Ferritic

Stamped and Nitrided

As-Stamped

2205 Duplex (Fe-22Cr-5Ni-3Mo base wt.%) Stamped and Nitrided As-Stamped

•Nitridation at 1000°C for 2 h in N_2 -4H₂ -promising initial corrosion results also with nitrided 2205 stainless steel

Parallel and Serpentine Design Refinement Underway to Establish Baseline for Single-Cell Evaluation

GenCell Exploratory Serpentine Flow-Field Stampings

•Serpentine flow-fields successfully stamped in austenitic 904L (above) and ferritic Crofer 22 APU foils

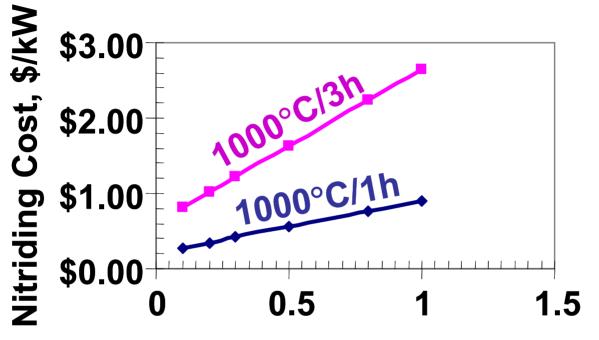
•Modeling and single-cell/hardware design "shakedown" studies underway

-platform for metal, nitrided metal, and graphite single-cell comparison

Stamped Fe-Cr-V Alloys Can Meet \$5/kW Transportation Cost Goals

2006 GenCell Cost Estimates for Stamped Bipolar Plates (<u>Nitriding Costs Not Included</u>)

Foil	Density	Bipolar Plate Cost (\$/kW)		
<u>Thick. (in)</u>	<u>kg/kW</u>	<u>\$3/lb Alloy</u>	<u>\$5/lb Alloy</u>	<u>\$7/lb Alloy</u>
0.002	0.26	\$2.31	\$3.47	\$4.58
0.004	0.38	\$3.15	\$4.26	\$6.57
0.008	0.64	\$4.86	\$7.69	\$10.51


•Higher-Cr ferritic commercial alloy foils ~\$3-7/lb :

- E-BRITE® (Fe-26Cr-1Mo wt.%): \$5-7/lb commercial price for foil
- Alloy 444 (Fe-18Cr-2Mo wt.%): \$3-5/lb commercial price for foil
- Above alloys likely comparable to Fe-Cr-V alloy range

•Alloy/stamping costs leaves < ~75 cents/kW for nitriding costs

75 cents/kW Nitriding Costs Potentially Feasible

Preliminary Cost Analysis by B. James, Directed Technologies

Furnace Plate Spacing, cm

•Automated, step-continuous conventional nitriding system at 500,000 systems per year, mark up not included

-keys are short nitriding cycle and high furnace plate stacking density

•Nitriding by pulsed plasma arc lamp in range of 16-44 cents/kW -feasibility to nitride Ti in "seconds" previously demonstrated

Summary

- •Ferritic and duplex compositions amenable to both stamping and nitriding have been identified
- •Alloy/nitriding envelope capable of imparting low ICR and high corrosion resistance at potentially acceptable nitriding cost identified (all in range of DOE targets)
- Potential to nitride stamped alloy foils without embrittlement and with little warping demonstrated -meets 1st milestone go/no go decision point

Future Work

- •FY 2008 (Funding delays have jeopardized work-plan schedule)
 - -Detailed characterization of corrosion and electrical properties of nitrided Fe-Cr-V developmental foils (corrosion and ICR data to date from lab-scale castings)
 - -Finalization of baseline 18cm² active area plate design for single-cell testing (modeling and shakedown testing)
 - -Single-cell testing of stamped and nitrided alloys compared to untreated stainless steel and graphite control plates 2nd Go/No go decision point for project

•FY 2009

-Modeling, shakedown testing, and down select for stamped 250cm² active area plates for 10-cell drive-cycle stack test.

-Project ends with post-test characterization and assessment