

2008 DOE Hydrogen Program Review:

Effects of Fuel and Air Impurities on PEM Fuel Cell Performance

- Presented by: Fernando Garzon
- •Los Alamos National Laboratory
- •June 12, 2008

Project ID #FC30

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Technical Staff

Los Alamos

Rod Borup Eric Brosha John Davey Fernando Garzon Bryan Pivovar Tommy Rockward Tom Springer Francisco Uribe Idoia Urdampilleta Judith Valerio <u>Case Western Reserve</u> <u>University</u> Thomas Zawodzinski Brian Kienitz

Overview

Timeline

- Project start -FY07
- Status- ongoing

Budget

- Funding in FY08: \$1000 K
- Funding for FY07: \$1200 K
- Non-cost shared

Near Term Targets:

- •5000 hrs durability
- 30\$/kW by 2010
- •55% energy conversion efficiency
- •0.3g/kW Pt loading

Barriers

- Fuel cell systems must cost less than \$50/kw
 - Fuel and air purifications systems add cost
 - Higher Pt loading required to maintain performance in presence of impurities increases cost
- 5000 hr lifetime needed. Durability may decrease in the presence of impurities

Technical Approach

•Fabricate and operate fuel cells under controlled impurity gases

- -Multi-gas mixing manifolds and FC test stations
- -Pre-blend impurity gases
- -Measure performance
- -Steady state and cycling conditions
 - •Understand degradation mechanisms
 - •Study mitigation approaches
- •Design supporting experiments to measure fundamental parameters needed for modeling
 - -Electroanalytical experiments
 - -Adsorption studies
 - -Permeation studies
- •Analyze and model data
 - •Impurity impact on catalysis
 - •Impurity impact on transport

- Impurities affect fuel cells in many ways:
 - Electrocatalyst poisoning e.g. H₂S, CO and SO₂ adsorption onto Pt catalysts
 - Reduce ionomer conductivity- Na⁺, Ca⁺⁺, NH₃
 - Block proton access to electrochemically active interface
 - GDLs become hydrophilic and flood at high current densities

Objectives

Overall Objective: Contribute to the scientific understanding of the effects of fuel and air impurities on fuel cell performance and how it affects DOE fuel cell cost and performance targets.

Specific Objectives:

- •Investigate effects of impurities on catalysts and other FC components
- •Understand the effect of catalyst loadings on impurity tolerance
- Investigate the impacts of impurities on catalyst durability
- •Develop methods to mitigate negative effects of impurities
- •Develop models of fuel cell-impurity interactions

•Collaboration with USFCC, Fuel Cell Tech Team, Industry and other National Laboratories to foster a better understanding of impurity effects

Milestones

Month/Year	Milestone or Go/No-Go Decision
Mar-08	Milestone: report on the performance degradation due to H_2S anode poisoning as a function of catalyst loading (0.1 and 0.05 mg Pt/cm ²). Completed
Apr-08	Milestone: Modeling and validation of impurity effects in PEMFCs. We have developed a model for understanding the effects of alkali contaminants on fuel cell response and experimentally validated the results using novel experimental methods. Completed
May-08	Milestone: Determination of multiple contaminant effects carbon monoxide and hydrogen sulfide, on fuel cell response. Completed

Impact of H₂S Exposure on Fuel Cell Performance

Exposure to 1.5 ppm H_2 S for 2, 4 and 6 hour

- Performance degradation is more severe for larger dosages
- Catalyst poisoning is cumulative

Basic Degradation Mechanism

Deactivation: $Pt + H_2S \square Pt-S + H_2$ $Pt + H_2S \square Pt-S + 2H^+ + 2e^-$ (heterogeneous catalysis) (eletrochem. conditions)

Cleaning: Pt-S + $4H_2O \square$ Pt + SO_4^{2-} + $8H^+$ + $6e^-$

- Strong sulfur chemisorption onto Pt deactivates the catalyst
- Pt-coverage: more than one monolayer of sulfur

•PtS may form under severe conditions

- 1. T. Loucka, J. Electroanal. Chem., **31**,319 (1971)
- 2. R. Mohtadi et al., *Electrochem. Solid State Lett.*, **6**, A272(2003
- 3. Garzon, et al., ECS Trans. 3, (1) 695 (2006))
- 4. W. Shi et al., *Journal of Power Sources*, **164**, 272 (2007)
- 5. Z. Shi et al., J. Electrochem. Soc., **154**, B609 (2007)

Technical Results: H₂S Temperature Effects

As T increases so does
the degradation rate
and extent.

Relative recovery after
returning to neat H₂
is higher at the higher T
but less total recovery

50 cm² / 40 A / 80 °C

Technical Results: Co-adsorption of CO and H₂S

- CO and H₂S often times occur together though CO concentration typically higher
- Both strong adsorpates CO peak 0.6-0.8V, S above 0.9V
- CO gas phase transport low water solubility; H₂S high water solubility
- Wet environment shows relatively more CO/H₂S
- Mix both gasses at 10:1 CO:H₂S ratio at concentrations for nearly complete poisoning

50 cm² cells / N112, 20 mV/s Loadings: 0.2 mg Pt at each electrode Cell Temperature: 80 °C. PSIG: 3.7/3.7

Technical Results: Co-adsorption of CO and H₂S

• CV indicates a larger presence of CO during short term exposure

•*H*₂S eventually replaces CO on the electrode surface

•CO kinetics are faster, H₂S has a higher adsorption strength H₂S suppresses CO adsorption

Wet environment shows more relatively more CO/H₂S

Co-Adsorption between CO and H₂S on Pt Electrode(10:1)at 80°C 11

Technical Results: Effect of Anode Air Bleeding

In contrast to CO mitigation, Anode <u>air bleed</u> does not have any significant benefit on poisoning or recovery for H₂S

H₂S crossover from anode to cathode ?

EVIDENCE:

- 1. Open circuit will allow chemical oxidation of sulfur by O_2 at the cathode
 - 1. Possible reaction: Pt-S + $3/2O_2$ + H₂O Pt + SO₄²⁻ + 2H⁺ (slow)
- 2. FC operation at high voltage will induce partial electrochemical
- 3. oxidation of sulfur, only at the cathode
- 4. Diffusion of H_2 S observed across the Nafion membrane
- 5. Injected H_2S at the cathode produces performance degradation

- MECHANISMS:
- Dry membrane permeation:
 - Permeation by diffusion
 - Rate proportional to concentration gradient
- Wet membrane permeation:
- co-permeation with water
- Rate proportional to water activity and conc gradient
- Proton drag:
 - moves with proton across cell
 - Rate proportional to current density
 - Need hydrogen pumping cell to study (avoids oxidation of H₂S)

Hydrogen sulfide state in membrane is a polar molecule
No ionic dissociation at low pH
High solubility:3.4 g/l-atm at 25°C

Technical Results: H₂S crossover, cont'd

1 ppm H₂S injected at the cathode

- H₂S at the cathode degrades cell performance
- Similar effect observed when SO₂ is injected at the cathode

- 1030 ppm of H_2S (wet/dry) and 6% H_2 (wet/dry) were flowed across the sides of a 117 membrane 50 cm² for 72 hours.
- The H₂S trap was placed in line after sufficient H₂S crossed over to passivate GDL and flow fields.
- •*Trapping experiment was run between* 500 and 1300 min alternating between humidified and dry membrane state.
- •Dry : 3.2e-8g/min H₂S crossover •Wet: 5.9e-7g/min H₂S crossover
- •Gas humidification greatly increases rate of crossover

15

Technical Results: Membrane Thickness Affects H₂S Crossover Rates

Rate of H_2S crossover in wet 212 membrane is 1.8e⁻⁶ g/min.

•Thinner membranes show higher crossover rates; scales with thickness

•Wet membranes show higher permeation rates

amos

<u>however</u> humidification decreases H₂S concentration reaching electrode

Technical Results: Hydrogen Pump Cell

- Use hydrogen pump cell to study anode poisoning and crossover
 - Measure polarization behavior before and after poisoning from either the anode or cathode compartment
 - Compare to fuel cell behavior
- 0.5 PPM H_2S in humidified H_2

Current density A/cm²

Fuel cell Performance after hydrogen sulfide exposure

Significant voltage losses created by H_2S in hydrogen pump mode

Current density A/cm²

Fuel Cell Researce

Technical Results: Impurity Effects Modeling- Electrodes ¹⁸

- Surface/speciation model pH Temp and S concentrations
 - Predominate sulfur species are *H*₂*S*, *S*-*Pt*, *PtS*, *PtS*₂ and *HSO*₄-
 - SOx species are not stable in acid fuel cells
 - Explains similarity in poisoning results from using H_2S , SO₂ or Na₂S
 - CANNOT be displaced by hydrogen or CO
- Pt sulfur coverage at -0.15 volts with increasing coverage as anode potential is raised for 1 ppb H_2S
- At higher potentials transition from S adsorbed on Pt to PtS with surface reconstruction
- Oxidation cleaning mechanism is inhibited by kinetics not thermodynamics @ 0.450 mV
- Surface speciation model coupled to fuel cell electro-kinetics model
 - Activity coefficient corrections for strong electrolytes (Pitzer model)
 - nanoparticle free energies data (+ than bulk Pt)
 - Surface thermodynamics for nanoparticles

P. Marcus, E. Protopopoff, *Comptes Rendus de L Academie Des Sciences Serie li* **308**, 1685 (1989).

Cation Contamination

Cationic contaminants

- Displace protons in the ionomer phase
- Have higher affinity for the membrane
- Have a lower conductivity than protons
- Originate from aerosols or corrosion
- Have been shown to affect fuel cell performance
- Removal mechanism poorly understood

Technical Results: Membrane Contaminant Profiles

• Cations move due to electro-migration and chemical diffusion:

$$j_{i^{+}} = -D_{i^{+}} \frac{dC_{i^{+}}}{dx} + u_{i^{+}} C_{i^{+}} \frac{d\Phi}{dx}$$

- Contaminants build up near the cathode
- Novel strip cell was used to show concentration profiles exist
- Contaminate concentration measured by XRF

Technical Results: Electrode Effects Model

- Contaminants replace protons in the electrode
- Cathode overpotential increases account for most performance loss
- Lack of protons leads to proton limited currents

Length (from GDL to PEM)

Species and reaction rate profiles across the electrode near proton limitation

Proton limited current for base case parameters

Technical Results: Alkali Contamination

•*We are using* Cs^+ *as a model alkali cation (behaves like* Na^+ *,* K^+ *)*

•*Very low detection limits with X-ray fluorescence Spectroscopy*

Lowers limiting current

Affects kinetics

Alamos

Cs⁺ ions leave the membrane slowly $(2.5 \ \mu g/cm^2/hr)$ but other cations show no recovery

22

Cationic Contamination Summary

- Fuel cell cationic contamination
 - Decreases ionomer conductivity
 - Lowers limiting current
 - Affects kinetics
- Modeling shows the mechanisms of performance degradation
 - Greatly increases cathodic overpotential due to loss of protons in the ionomer phase
 - Can lead to proton limited current
- Fuel cell recovery
 - 50% of Cs can leave in 2 days of operation
 - Some other ions also show recovery
 - Rate of recovery is still small compared to proton flux

Technical Achievements

- Measurement of increased degradation of fuel cell performance by H_2S with increasing temperature
- Measurements of H_2S membrane crossover for wet and dry membranes
- CO and H₂S co-adsorption kinetic studies
 - fast adsorption kinetics for CO but eventually displaced by H_2S
- H_2S anode poisoning studied by H_2 pump cells
- Model development and measurement of alkali cation contaminant behavior in perfluorosulfonic acid membranes
- Experimental measurement of fuel cell losses due to alkali cation contamination- good agreement with model

Future Work

- Continued contaminant crossover studies: Proton drag of H_2S
- Fundamental electrokinetic measurements of poisoned electrodes
- Lower cathode loading impurity studies
- Impurity effects on durability studies
 - New commercial MEAs with 2010 loadings
- Refine and validation of electrode impurity modeling efforts
- Studies of the effect of divalent cations on Fuel Cell performance
- Air contaminate studies: hydrocarbons and particulates

