

2008 DOE Hydrogen Program

The Effects of Impurities on Fuel Cell Performance and Durability

Trent M. Molter, Ph.D. The University of Connecticut June 12, 2008

Project ID #FC31

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start March 2007
- End February 2011
- ~20% Complete

Budget

Total Project Funding \$2,335,725

- DOE Share \$1,868,580
- Contractor Share \$467,145

Funding for FY07 - \$350K Funding for FY08 - \$400K Received, \$150K Anticipated

 Establish Tolerance to Air, Fuel and System Derived Impurities

Partners

United Technologies Hamilton Sundstrand – Historical Contaminant Data FuelCell Energy, Inc. - Contaminant Test Support UConn CGFCC – Project Management, Testing, Modeling

Objectives

- Overall Objective Develop an Understanding of the Effects of Various Contaminants on Fuel Cell Performance and Durability
- Specific Task Objectives Shown Below

Task	Objectives
1.0 Contaminant Identification	 Identify specific contaminants and contaminant families present in both fuel and oxidant streams.
2.0 Analytical Method Development	 Development of analytical methods to study contaminants. Experimental design of analytical studies. Novel <i>in situ</i> detection methods.
3.0 Contaminant Studies	 Develop contaminant analytical models that explain these effects. Establish an understanding of the major contamination-controlled mechanisms that cause material degradation in PEM cells and stacks under equilibrium and especially dynamic loading conditions
4.0 Contaminant Model Development	 Construct material state change models that quantify that material degradation as a foundation for multiphysics modeling Establish the relationship between those mechanisms and models and the loss of PEM performance, especially voltage decay
5.0 Contaminant Model Validation	• Validate contaminant models through single cell experimentation using standardized test protocols.
6.0 Novel Mitigation Technologies	• Develop and validate novel technologies for mitigating the effects of contamination on fuel cell performance.
7.0 Outreach	• Conduct outreach activities to disseminate critical data, findings, models, and relationships etc. that describe the effects of certain contaminants on PEM fuel cell performance.

Approach

- Initiate Studies by Leveraging Existing Database From Prior Work
 - DOE Sponsored Activity
 - USFCC Data
 - Prior Electrolysis Product Experience
- Focus on Specific Contaminants/Concentrations Identified by DOE/Others
- Use Standardized Test Protocols Where Appropriate to Investigate Contaminant Effects
- Develop Empirical Models Based on Our Findings

Roles of Participants **CGFCC**

In-Situ Contaminant Testing Hydrocarbons and Halogenated Compounds

- Initiate Testing With Methane
- Establish Analytical Techniques, Test Protocols, Basic Performance Models
- Export Data in Common Format to Working Groups for Further Modeling
- Contaminant Strategy
 - Near Term Focus Hydrocarbons and Halogenated Compounds
 - Choice Based on Industry Input
 - Start With High Level Dilute if Effects are Noted
 - Empirical Models Near Term
 - Multi-Physics Models Long Term

In-Situ Contaminant Testing Hydrocarbons and Halogenated Compounds

- Status (Contaminant Choices Based on Industry Input)
 - Methane $\sqrt{}$
 - Ethane $\sqrt{}$
 - Ethylene In Process
 - Aldehydes Formaldehyde, Acetaldehyde (In Process)
 - Organic Acids Formic Acid
 - Glycols Propylene Glycol, Ethylene Glycol

In-Situ Contaminant Testing

Hydrocarbons and Halogenated

Compounds

MEA Definition

Parameter	Value
Membrane	Nafion 112
Anode Loading	0.4 mg/cm2
Anode Type	50% Pt on C
Cathode Loading	0.2 mg/cm2
Cathode Type	50% Pt on C
Cell Area	25 cm2
OEM	Fuel Cell Technologies

Operating Conditions

Parameter	Value
Anode Temperature	80C
Cathode Temperature	80C
Cell Temperature	80C
Anode Humidity	100%
Cathode Humidity	100%
Anode Stoich	1.3
Cathode Stoich	2.0
Anode Flow	Commensurate With Current Density
Cathode Flow	Commensurate With Current Density
Anode Pressure	25 psig
Cathode Pressure	25 psig

Cell Conditioning and Tests Performed in Accordance With Standardized Protocols

- Cell Conditioning and Verification per section 4.2 Appendix B Round Robin Test Results Document.
- ECA Measurement Per Appendix 8.
- H2 Crossover Per Appendix 7.

٠

٠

Polarization Under Standard Hardware Conditions 0 – 1.3 A/cm2 per table next page, with a data sample rate of 25 sec. Repeat 3 times.

In-Situ Contaminant Testing Hydrocarbons and Halogenated Compounds

Current	Time
20 Amp	1 Min.
25 Amp	1 Min.
30 Amp	1 Min.
25 Amp	15 Min.
20 Amp	15 Min.
15 Amp	15 Min.
10 Amp	15 Min.
5 Amp	15 Min.
Open Circuit	1 Min.
5 Amp.	10 Sec.
10 Amp	10 Sec.
15 Amp	10 Sec.
20 Amp	10 Min.

- Durability Test at 800 mA/cm2 for 100 Hours Under Standard Conditions.
- Durability Test at 800 mA/cm2 for 100 Hours Under Standard Conditions – except with TBD Conc.¹ contaminant in hydrogen.
- Repeat at 600 mA/cm2
- Repeat at 200 mA/cm2
- 1) 5% 100 PPM 50 PPM

In-Situ Contaminant Testing Hydrocarbons and Halogenated Compounds

- Lab Test Stand Configured for Initial Testing
- GC & Mass. Spec.
 Set Up for
 Contaminant Analysis
- Second Lab Test Stand Just Came Online
- Expect Additional Test Capability This Summer

A United Technologies Company

Durability Test (100 hours with/without CH4)

Anode / Cathode Pressure:25 psig / 25 psigControl Current @ 600 mA/cm²Cell Temp:80 ° CHumudifier:80 ° CAnode / Cathode Flow Rate:175 sccm / 642 sccm

Durability Test (24 hours with/without CH4, N2)

Anode / Cathode Pressure: 25 psig / 25 psig Cell Temp: 80 ° C Anode / Cathode Flow Rate: 175 sccm / 643 sccm Control Current @ 600 mA/cm² Humudifier: 80 ° C

Data Show No Dilution Effect With Either N₂ or CH₄

Durability Test (100 hours with/without C₂H₆)

Anode / Cathode Pressure: 25 psig / 25 psig Cell Temp: 80 ° C Anode / Cathode Flow Rate: 172 sccm / 643 sccm Control Current @ 600 mA/cm² Humudifier: 81 ° C / 80 ° C Mixing Flow Rate: 9 sccm

100 Hours Durability Test @ 600 mA/cm2

Membrane Studies Cationic Contaminants

- Focus is on Membrane Properties Rather Than Fuel Cell Operational Tests
 - Fluids Permeability
 - Water Content
 - Ion Exchange Capacity
 - Conductivity/Ionic Resistance
 - Mechanical Properties
 - Contaminant Characterization Using SEM/EDX
- Move Down and Across Periodic Table to Examine Mass and Valence Effects of Common Ions

		_																	
	hydrogen																		helium
	-ù l																		11 a
	H																		не
	lithum	beryllum	1											boron	carbon	nitrogen	oxygen	fluorine	10026 noon
	1.	D ⁴												ĥ	ŝ	Ń.	å	9	10
	41	ве												в	C	N	0	F	Ne
- H	6.941 socium	9.0122 magnesium												aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	chlorine	20.180 argon
	."	12												13	14	15	16	17	18
	Na	wig												A	SI	Р	S	CI	Ar
-	22, 90 Iotar sium	24.305 calidum		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.095 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
	12	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ga		Se	- 11	V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
- H	39,098 rubi lum	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthonium	58.933 rhodium	58.693 palladium	63,546 silver	65.39 cadmium	69.723 Indium	72.61 fin	74.922 antimony	79.96 tellurium	79.904 lodine	83.90 xenon
	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr		Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
- E	85,168 cae.ium	87.62 barium		88.906 Jubatium	91.224 hatnium	92,906 tantalum	95.94 tungsten	[96] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 tholium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
	•	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
- H	132.91 franckim	137.33 radium		174.97 kromenchum	178.49 rutherfordum	180.95 Outpolum	183.84 seabordum	186.21 bohrium	190.23 bassium	192.22 meithertum	196.08 urunnilum	196.97 URU/PUDU/D	200.59 ununbium	204.38	207.2 unungunglum	208.98	[209]	[210]	[222]
1	87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
	Fr	Ra	* *	Lr	Rf	Db	Sq	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
_	[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
				lantharum	cerium 59	praseodymiun 50	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium	terbium 65	dysprosium 66	holmium 67	erbium 69	thulium 60	ytterbium 70		
	Lanth	hanide	series	L'a	Co	Dr	Nd	Dm	Sm	Eu	Gd	Th	ny	Ц'n	Er	Tm	Vh		
				138.01	140.12	140.91	144.24	11.451	150.36	151.96	157.25	150.93	162.50	164.93	167.26	168.93	173.04		
	****	inida e	orioo	actinium	thorium	protactinium	uranium 02	neptunium 02	plutonium	americium	curium	berkeilum 07	californium	einsteinium	fermium 100	mendelevium 101	nobelium 102		
	ACT	mae s	eries	Å.	Th	Do	92	Nin	D	Am	Cm	DL	Cf	Ea	Em	Md	No		
				AC	232.04	rd	238.03	14p	PU	AIII	1247	DK	051	2521	12571	1250	INO		
				(2.2.7)	Z32.04	Z31.04	Z36.03	2.37	[299]	1043	2.47	247	401	2021	1237	200	2.00		

									AC Resistance -	Compressive	UTS &		Ionic Dispersion
		Sample	Water					Hydrodynamic	Through	Strength &	Elongation		and
Molarity	Ion	Preparation	Content	IEC	N2 Permeability	H2 Permeability	O2 Permeability	Permeability	Plane	Modulus	@ Break	Ionic Uptake	Transport
0.01	H+												
0.01	Na+												
0.1	Nat												
0.01	l i+												
0.01	l i+												
1	Li+												
0.01	K+												
0.1	K+												
1	K+												
0.01	Cs+												
0.1	Cs+												
1	Cs+												
0.01	Mg+2												
0.1	Mg+2												
1	Mg+2												
0.01	Al+3												
0.1	Al+3												
1	AI+3												
0.01	Ca+2												
0.1	Ca+2												
0.01													
0.01	Cr+3												
0.1		1											
0.01	Ee+2												
0.01	Fe+2												
1	Fe+2												
0.01	Ni+2										1		
0.1	Ni+2												
1	Ni+2												

Membrane Preparation & Contaminant Choices

Membrane Preparation

- Nafion 117 Membrane
- 1 Hour Boil in DI H2O
- 1 Hour Soak in Cation Salts
 - 1 M
 - 0.1 M
 - 0.01 M

Contaminants Chosen From Constituents of Common Automotive Alloys Per Industry Recommendation, Plus Related Families of Constituents to Establish Scientific Trends

- •Carbon Steels
- •Low and Intermediate Alloy Steels
- Stainless Steels
- Copper and Copper Alloys
- Nickel and Nickel Alloys
- •Aluminum Alloys

Water Content Assessment

- Membrane Water Content Drops Significantly With Cation Exposure
- Membrane Water Content Decreases Significantly as We Move Down Periodic Table – Largely Due to the Change in Hydration Shell for Each Ion

A United Technologies Company

Ion Exchange Capacity CGFCC

- Nearly 100% of Ion Exchange Sites Consumed for Most Cation Contaminants
- Sites Consumed at Low
 Concentration

FuelCell Energy

INNOVATION MADE SIMPLE

Fluids Permeability

- Permeability of Various Fluids Characterized
- Permeation Rate Appears to be Linear With Pressure (Fick's Law)
- Cationic Contaminants Affect Permeability in Different Ways
 - H₂, O₂, N₂ and H₂O Reduced

A United Technologies Company

Mechanical Properties CGFCC

- Yield Strength and Modulus Found to Increase With Contamination
- Tensile Strength and Elongation at Break Found to Decrease With Contamination

Impurities Modeling CGFCC

1000 000

500 ppm

100 ppr

- 6 Faculty Members Involved in Impurities Modeling
 - 4 Multi-Physics Based Modeling
 - 2 Models Based on Numerical Techniques
- Two Objectives
 - Interpret Existing Experimental Data
 - Develop a Predictive Tool to Analyze Effects of a Given Fuel Mixture
- Modeling at Different Levels
 - Systems Level
 - Macroscopic Fuel Cell Modeling
 - Kinetics
 - Transport
 - Durability
 - Microscale Modeling
- Validation

INNOVATION MADE SIMPLE

Future Work

		Yr	1			Yr	2			Yr	3			Yr	4	
Task	Q1	Q2	Q3	Q4												
1.0 Contaminant Identification																
2.0 Analytical Method Devt.																
3.0 Contaminant Studies																
4.0 Contaminant Model Devt.																
5.0 Contaminant Model Validation																
6.0 Novel Mitigation Tech.																
7.0 Outreach																
8.0 Project Management and Reporting																

<u>FY08:</u>

•Complete Key Organic Species

•Complete Cations

•Characterize Membrane for Ammonia and H₂S Effects Including Crossover •Initiate Modeling Efforts FY09:

- •Continue Organics
- •Initiate Halogenated Hydrocarbons
- •Complete Initial Empirical Models
- •Begin Model Validation

FuelCell Energy

Task	Milestone	Date Year/Quarter
1.0 Contaminant Identification	Contaminant Identification Review With DOE Sponsor & Industry Focus Group	Y1/Q2
2.0 Analytical Method Development	Validate Analytical Methods For Studying Contaminants With Ersatz Gases	Y1/Q4
3.0 Contaminant Studies	Establish an Understanding of the Major Contamination-Controlled Mechanisms that Cause Material Degradation	Y2/Q4
4.0 Contaminant Model Development	 Determine the Relationship Between Contaminant Mechanisms and the Loss of PEM Performance, Especially Voltage Decay. 	Y3/Q4
5.0 Contaminant Model Validation	 Validate Contamination Models Through Single Cell Experimentation Using Standardized Test Protocols and a DOE Approved Test Matrix 	Y4/Q1
6.0 Novel Mitigation Technologies	 Demonstrate Novel Technologies for Mitigating the Effects of Contamination on Fuel Cell Performance 	Y4/Q4
7.0 Outreach	 Dissemination of Results Through Reports (DOE Approved), Papers and Workshops 	Continuous
8.0 Project Management and Reporting	Program Written Reports and Program Reviews	Continuous

4 Year Project Time Phased Milestones Activities and Expertise

Project Summary

<u>Relevance</u> - A Deeper Understanding of the Effects of Specific Contaminants on Fuel Cell Performance is Necessary for Successful Commercialization <u>Approach</u> - Our Experienced Team Will:

- Leverage Existing Knowledge and Will Systematically Investigate Certain Fuel Contaminants of Interest
- Create Empirical and Detailed Analytical Models to Predict the Fate of Specific Contaminants and Their Effect on Fuel Cell Performance
- <u>Technical Accomplishments and Progress</u> Established Test Capability and Ability to Work With Common Protocols, Completed Evaluation of Methane and Ethane, Evaluated Cationic Effects on Membrane
- <u>Proposed Future Research</u> Continue Organics Per Industry Recommendation, Move on to Halogenated Compounds, Finish Cations, Initiate Modeling Efforts
- <u>Technology Transfer</u> Data Will Be Shared Through Papers, Workshops, Working Groups, Etc.
- <u>Collaboration</u> Active Partnership with UTC-HS and FCE, Coordination With Other Labs, Working Groups

