

Development of Thermal and Water Management System for PEM Fuel Cells

2008 DOE Hydrogen Program United States Department of Energy

> June 12, 2008 08-75191

Crystal Gateway Marriot Arlington, Virginia

Project ID# FC 37

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Mirza

Honeywell Attendees

Honeywell

ENGINES & AIR MANAGEMENT – TORRANCE , CA

Zia Mirza Program Manager Development of Thermal and Water Management System for PEM Fuel Cells Torrance, CA Phone: 310-512-3374 E-mail: zia.mirza@honeywell .com

Agenda

- Overview
- Program Status
- Objectives
- Approach
- Test Results Summary
- Milestones
- Go-forward Plan

Overview

Timeline

- Project start FY03
- Program stopped FY05/FY06
- PO end date April 2009
- 70% complete

Honeywell

Budget

- Total project funding
 - DOE share 3,250K
 - Honeywell \$812K
- DOE funding in FY 2003/04
 - **\$1,530K**
- DOE funding in FY07
 - **\$372K**
- DOE funding for FY08
 - **\$400K**

- Performance of select full scale humidification system
- Thermal performance of advance radiators to meet fuel cell cooling requirements

- US Department of Energy
- Argonne National Lab
- FreedomCAR Tech Team

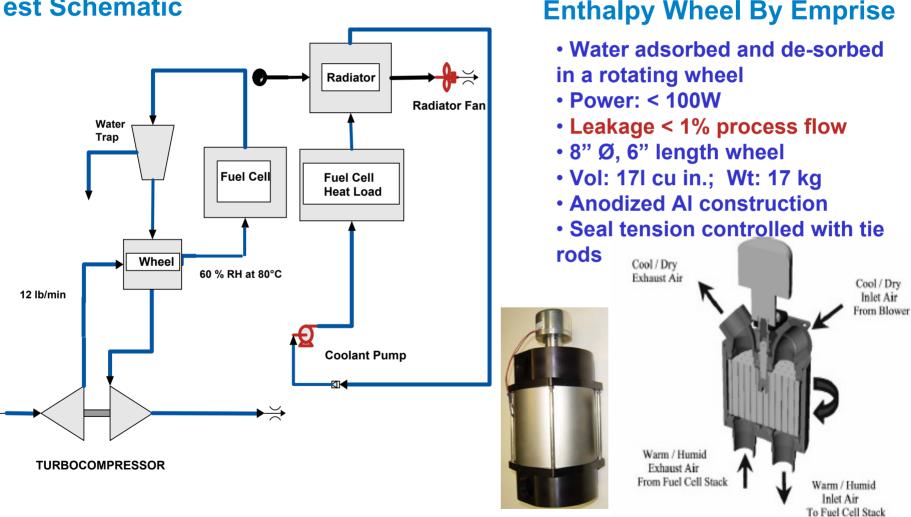
Thermal & Water Management Program Status

- DOE funding was stopped for FY 05/06
- Water management task was selected for FY 07 due to limited funding followed by thermal management
- Accomplishments during FY2003/04
 - Develop humidification and cooling system for 80 kW fuel cell for transportation
 - Performed system concept analysis
 - Radiator trade studies showed potential for improvements in current technology
 - Microchannel and advance louver heat exchanger were down selected
 - Preliminary Design & analysis completed
 - Short stack microchannel heat exchanger was fabricated

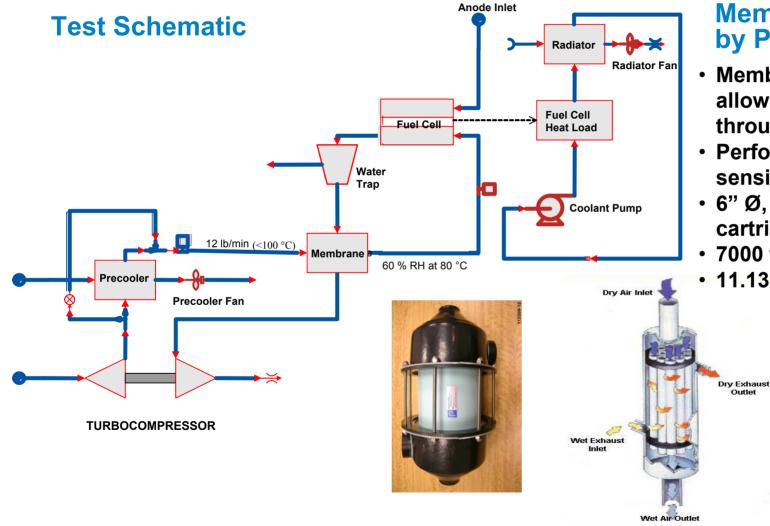
Objectives for FY 2007/2008

- Validate performance of full scale humidification devices sized for 80 kW fuel cell
 - Install, hook-up and checkout test stand
 - Test Emprise enthalpy wheel
 - Test Perma Pure membrane module
- To improve PEM fuel cell performance and life, the humidity of inlet air stream should be maintained at a high level (currently 60%)
- Design a full size radiator to meet the 80 kW fuel cell cooling requirements

Approach

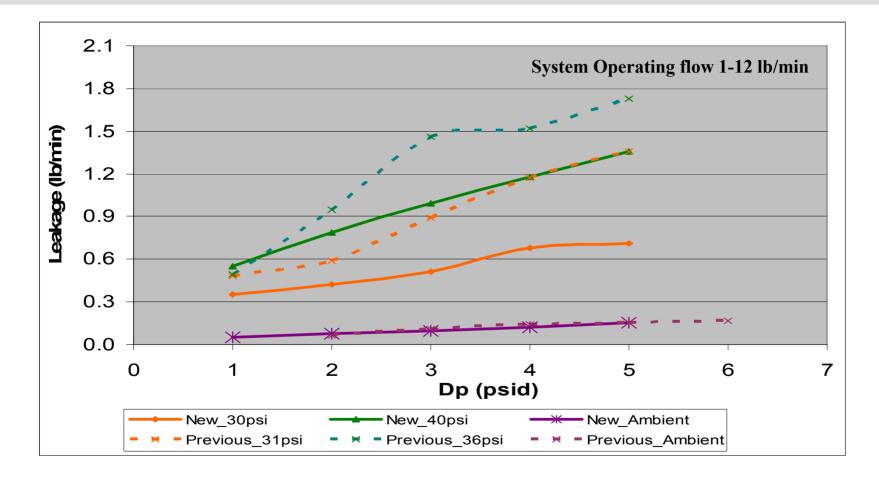

- The inlet air to the PEM fuel cell stack should have a minimum humidity of 60% (at 80 °C) for performance and increased life
- Two humidification systems were down-selected for the fuel cells application
 - Enthalpy Wheel (ceramic honeycomb) rotates while adsorb moisture from fuel cell outlet air and transfer (de-sorb) it to the inlet air
 - The Nafion membrane transfer moisture from one side of the air stream to the other side. The membrane has upper temperature limit which require precooler in the inlet air stream
- Small scale systems met the requirements

Honeywell

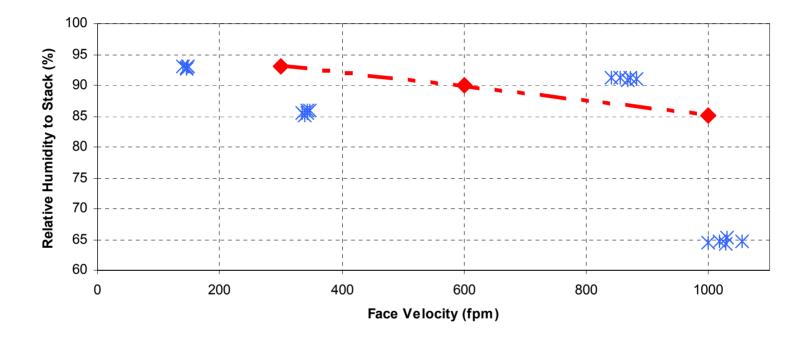

- Full scale system testing is 80% complete
 - Enthalpy wheel seal leakage of up to 18% was observed at high operating pressures
 - Membrane module performance degraded at lower air flow rate

System Approach I (Enthalpy Wheel)

Test Schematic


System Approach II (Membrane Module)

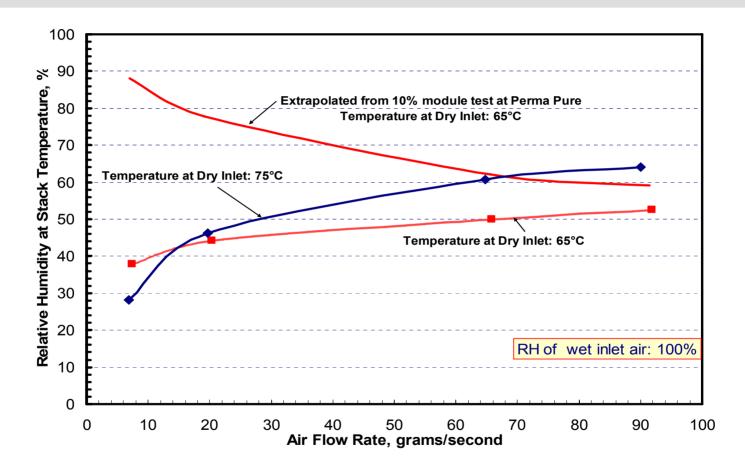
Membrane dryer by Perma Pure


- Membrane selectively allow water to pass through
- Performance sensitive to temp.
- 6" Ø, 10" length cartridge
- 7000 fibers 0.045" OD
- 11.13 in² Nafion

Enthalpy Wheel Seal Leakage

High Seal Leakage at higher operating pressures

Enthalpy Wheel: Humidification


10% Sub scaled data by supplier

Honeywell

x Full-Scale 45 rpm

High Seal Leakage result in low performance

Membrane: Humidification

Relative Humidity less than 60% at low face velocity

Test Results Summary

- Enthalpy wheel showed leakage up to 15% across the seal at higher operating flows (pressures)
- Enthalpy wheel humidification data was scattered due to seal leakage
- Membrane module met humidity requirements at high flow rate, at low flow rate the performance degrades due to air bypassing the membrane bundle
- Honeywell is working with manufacturer to improve the performance of the humidification devices
 - Emprise have made some modification which resulted in reduced leakage
 - Plan to test half scale membrane module to validate saturated air bypassing

FY07/08 Schedule and Major Milestones

ID		ID	Task Name											4th Qua	rter			
	0			7/23	7/30	8/6	8/13	8/20	8/27	9/3	9/10	9/17	9/24	10/1	10/8	10/15	10/22	10/29
1		1	DOE PEM Fuel Cell Water Management Program															
2	\checkmark	2	Program Start	J ^{7/23}														
3	1	3	Define requirements															1
4	_	4	Kick-Off with DOE) (C	9/2 ₁					C
5	_	5	Component Modeling/Analysis				\checkmark											-
6	_	6	Enthalpy Wheel						<u>i</u>									
7	_	7	Membrane Module					•		1						1		
8		8	Performance prediction						-					-				1
9		9	Testing									÷						-
10		10	Test stand Installation in test cell															-
11		11	Install Test Stand					-ċ	iõ		ā	·Ö						
12		12	Calibrate instrumentations									1						
13		13	Check out Test Stand															-
14		14	Test Plans					¢				.ö						Ċ
15		15	Enthalpy Wheel						-	1								
16		16	Membrane Module										4					
17		17	Test Readiness Review											-		10	/16	
18	_	18	Test								¢	•••••••						-
19	_	19	Enthalpy Wheel			-	-						-					
20		20	Membrane Module				-										-	
21		21	Data Analysis & validation								¢	•••••••				1		
22		22	Interim Status Reports															1
23	111	23	Final Report preparation															
24	111	24	Final report submittal to Customer							1				-		1		

Water Management program kickoff	7/23/07				
Requirements definition	9/21/07				
Test system set-up	10/2/07				
Test Readiness Review (TRR)	10/16/07				
Enthalpy wheel testing	11/15/07				
Membrane module testing	12/17/07				
Thermal Management program kickoff	3/27/08				

Thermal Management Go-Forward Plan

FY 2008

- Complete re-testing of the humidification devices
- Re-visit radiator trade study
- Evaluate performance of advanced radiator technologies
 - Radiator size & weight optimization
 - Parasitic power consumption
 - Manufacturability and cost
- Verify 80 kW PEM Fuel Cell Thermal Management CTQ's
- Radiator Fan and coolant pump
 - Power Optimization
 - Drag needs to be evaluated

FY 2009

- Design, built, and test full scale radiator for select technology
- Validate design and demonstrate performance
- System integration of thermal & water management system