

## Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management

## Ward TeGrotenhuis, PM

Dustin Caldwell, Curt Lavender, Ben Roberts Pacific Northwest National Laboratories Richland, WA

June 12, 2008

**Project FC38** 

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Battelle

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

# **Overview**

## Timeline

Start – February, 2007
End – March, 2009
45% Complete

## **Budget**

- \$1000K Total funding
  - DOE share 100%
  - Contractor share 0%
- \$300K FY07 funding
- \$650K FY08 funding

## **Partners**

- PNNL PM & technology development
- ADMA Manufacturing support
- ANL System analysis support

## **Barriers**

- 3.4 Fuel Cells Barriers
  - B. Cost:
  - E. System Thermal and Water Management

### Targets

 3.4.2 Automotive-Scale: 80 kW<sub>e</sub> Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen

|                   | Target                 | 80 kW <sub>e</sub><br>System | Water Mgmt<br>Target % |
|-------------------|------------------------|------------------------------|------------------------|
| Power<br>Density  | 650 W <sub>e</sub> /L  | 123 L                        | 2–7%                   |
| Specific<br>Power | 650 W <sub>e</sub> /kg | 123 kg                       | 2 - 9%                 |
| Cost              | \$30/kW <sub>e</sub>   | \$2400                       | < 7%                   |

# Objective

## OVERALL

• Create a low cost, passive technology for water management in PEM systems

# **Milestones**

| Month/Year | Milestone                                                                                                                                                                | Status                                                                                                                                                                                                                    |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| April-08   | Demonstrate a prototype<br>humidifier device with<br>processing capacity to support<br>1 kWe fuel cell at a power<br>density >8 kWe/L and a specific<br>power >6 kWe/kg. | A 1 kWe device has been designed and built at 22 kWe/L power density and 4.2 kWe/kg specific power. Testing in progress.<br>Scale-up to 80 kWe device projected at ~42 kWe/L power density and ~10 kWe/kg specific power. |  |
| May-07     | Projected manufacturing cost<br><\$3/kWe based on validated<br>process                                                                                                   | The primary cost driver for the device would be<br>suitability of powder rolled and annealed sheet.<br>Current results indicate the powder rolled sheet<br>will work and therefore cost projections will be<br>met.       |  |

# Approach



#### Battelle

supply water during start up.

## **Approach** Based on a Family of Separations Technologies



## **Single Channel Demonstration and Testing**

The technology is feasible and size and weight targets are achievable based on measured performance data.



- Demonstrate and characterize concept
- Evaluate alternative porous materials
- Validate heat and mass transfer model
- Support scale-up to multi-channel devices
  - 1 kW to 10 kW scale



- Heat transfer limited on the cold side
- Cold side exits at 100% RH
- Nu number 70% higher for interleaved device
- Start-up
  - Immediate after 2-day wet shutdown
  - 30 minutes from bone dry

## **System Integration**

Saturated air stream from the humidifier has implications for system integration. Active controller permits control of cathode feed RH.



Placing humidifier after blower/compressor adds FC pressure drop to humidifier differential pressure.



Pacific Northwest National Laboratory U.S. Department of Energy 7

# **Heat and Mass Transfer Modeling**

- One dimensional model to support design
- Correlation-based Heat and Mass Transfer
  - Heat Balance Equations (Chilton-Hougen method)

$$\alpha_h \phi (T_h - T_{hw}) + \lambda \, \dot{n}_h = \frac{k_w}{t_w} (T_{hw} - T_{cw}) = \alpha_c \phi (T_{cw} - T_c) + \lambda \, \dot{n}_c$$

Mass Transfer Equations

$$\dot{n}_h = \beta_h \ln\left(\frac{P - p_{sat}(T_{hw})}{P - p_h}\right)$$

Chilton-Colburn Analogy

$$\beta_h = \left(\frac{\Pr_h}{Sc_h}\right)^{2/3} \frac{\alpha_h}{Cp_h}$$

### **Design and Fabrication of kW Scale Prototypes**





Header section

- Flat plate design for multi-channel devices
- Internal channel spacing controlled by pressing features into wicks
- Scalable by width and number of layers
- Bonding done with low temperature process

### **Design and Fabrication of kW Scale Prototypes**



| Scale                    | Volume  | Weight  | Power Density         | Specific power          |
|--------------------------|---------|---------|-----------------------|-------------------------|
| 1 kW <sub>e</sub> Target |         |         | 8 kW <sub>e</sub> /L  | 6 kW <sub>e</sub> /kg   |
| 1 kW <sub>e</sub>        | 0.045 L | 0.24 kg | 22 kW <sub>e</sub> /L | 4.2 kW <sub>e</sub> /kg |
| 10 kW <sub>e</sub>       | 0.28 L  | 1.4 kg  | 35 kW <sub>e</sub> /L | 7.0 kW <sub>e</sub> /kg |
| 80 kW <sub>e</sub>       | 1.9 L   | 8.7 kg  | 42 kW <sub>e</sub> /L | 9.2 kW <sub>e</sub> /kg |

#### Pacific Northwest National Laboratory U.S. Department of Energy 10

### Sintered Porous Media at the Heart of the Technology

### **Key performance metrics**

- Bubble point precludes air crossover
- Permeability sufficient water flux and distribution
- Conductivity directly in the heat transfer pathway
- Cost most expensive material cost

### Develop low-cost, high volume material

Direct powder rolling with ADMA



- 0.005 to 0.030 inch thicknesses
- Layered structures possible

# **Comparison of Porous Materials**



Powder rolled sheet

- Material properties as good or better
  - ~2X higher bubble point pressure
  - Comparable permeability 2-3 orders of magnitude margin
  - Conductivity not significant transport resistance



## **Durability Testing** Freeze/Thaw Characterization

- Samples of the porous wick from 304 and 430 stainless were subjected to Mil-STD-331C temperature humidity cycle
  - 28 day cyclic exposure from -40°C to +95°C in 95% RH
- Samples were tensile tested with and without exposure
  - Standard E8 sample



Cycle repeated for 28 days with 95% RH at 95°C

# Wick Strength with Freeze/Thaw



- Tensile fracture load did not show variation with exposure
  - Average change less than sample to sample variation
- Highest tensile strengths were measured in the 60% dense wicks
  - Exhibited classic tensile ductility up to 2%



Battelle

Failed 304 Tensile samples

# **Manufacturing Cost Estimate**

### Materials of Construction

- Wick will likely be 430 Stainless; approximately \$8/lb with \$0.5/lb for powder roll and anneal – atomized and unscreened powders
- Vapor layer likely to be a epoxy vinyl ester resin with a glass fiber mat to reduce thermal expansion mismatch
- Porous wick will be coiled and processed using progressive die stamping and fine blanking
  - Tool cost on the order of \$200K with a piece cost of approximately \$0.40
- Outer shell and plenum fabrication method and cost to be determined
  - Likely to be a resin infusion process
    - Pressure (vacuum), temperature and times to be determined





430 Stainless wick structure

Pacific Northwest National Laboratory U.S. Department of Energy 15

## Manufacturing Cost Estimate 80 kW<sub>e</sub> Scale Humidifer

Wick material will be approximately 9lbs

- Tooling amortization is favorable and low strength porous wick will enhance die life
- About 41,000,000 wicks per year 278 per 80kW device
- Total Wick cost will be about \$111 per device
  - Stainless steel prices are very high
- Vapor layer materials and end plates will be approximately 1lb
  - In volume epoxy vinyl ester and glass mat is approximately \$5/lb
  - Tooling amortization will be a low contributor to cost
  - Cycle time will be primary issue

Battelle

 Driven by viscosity and cure time; must not wick into stainless while rapidly wicking into glass fiber mat **Stacking Video** 

# **Future Work**

### FY08

- Complete testing and analysis of the 1 kW<sub>e</sub> prototype
  - Validate design model
  - Vary operating conditions, including flows, temperatures, and hot and cold stream RH
  - Evaluate start-up and transient response
  - Assess reliability and durability—start-up from a frozen condition
- Validate low cost manufacturing process
  - Costs for manufacturing 80-kW<sub>e</sub> device at <\$3/kW<sub>e</sub>
- Develop integration approach for automotive fuel cell systems
  - Assess impact of ancillaries to size, weight, and cost of overall system
- Design and fabricate a 10 kW<sub>e</sub> prototype device
- ► FY09
  - Demonstrate 10 kW<sub>e</sub> device in a fuel cell system

# Summary

Microwick approach offers advantages for PEM Fuel Cell systems

- Small size due to high power density heat transfer and rapid mass transfer
- Passive operation
- Low pressure drop enabling operation with blowers
- Orientation independent
- Self recovery during process upsets
- Feasibility demonstrated in single channel device
- Go criteria for size, weight and projected cost are met
  - Power density >8 kW<sub>e</sub>/L and specific power >6 kW<sub>e</sub>/kg
  - Mass manufactured at <\$3/kW</li>

Scalable prototype built for 1 kW<sub>e</sub> and testing in progress