Development and Demonstration of a New Generation High-Efficiency 1-10 kW Stationary PEM Fuel Cell Power System

Durai Swamy, Ph.D.

Intelligent Energy

June 12th, 2008

INTELLIGENT ENERGY Clean fuel and power

Project FC39

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline -Start: July 2007 -End: July 2010

-25% complete by 4/08

Barriers DOE 2011 Targets Project Electrical Eff. 40% 40% > 70% **Overall Eff.** 80% Durability 40,000 hrs 40,000 hrs Capital Cost \$400 / kW \$750 / kW

Budget

- -\$4.4 million budget
 - -50% DOE cost share
- -\$322K received FY07
- -\$450K projected for FY08

Partners

- -Intelligent Energy, Inc. (lead)
- -Intelligent Energy, Ltd.
- -University of South Carolina
- -California State Polytechnic University, Pomona
- -Sandia National Labs

Objectives

Develop and demonstrate a PEM fuel cell based stationary power system that provides foundation for commercial, mass produced units that address identified technical barriers

- Technical objectives
 - -40% electrical efficiency (fuel to electric energy conversion)
 - -70% overall efficiency (fuel to electric energy + usable waste heat energy conversion)
 - -Potential for 40,000 hour life
 - -Potential for \$450/kW
- Topic 7A International Partnership for a Hydrogen Economy (IPHE)
 - -Engage international partners
 - -Demonstration phase in an IPHE country other than USA

Milestones

Month/Year	Milestone or Go/No-Go Decision	
July 2007	Contract signed and project launched	
January 2008	Milestone: Evaluation of adsorbent materials for use in adsorption enhanced reformer completed; initial tests with high pressure membrane reformer completed	
July 2008	Go/No-Go Decision: Validation of hydrogen generation and fuel cell performance improvements demonstrating the viability of achieving a 40% electrical efficiency for the system will be complete. A Go decision will be followed by proceeding to development and testing of a prototype PEMFC power system.	

Approach

Open architecture – high purity hydrogen interface between fuel cell, fuel processor

- Increase cell voltages
 Increase hydrogen generation thermal
 - efficiency
- Decrease
 parasitic loads

Approach

- Fuel cell stack and system
- Improved flow field design
- Fluid flow modeling
- Advanced MEA design
- Diffuser optimized for water management
- Advanced bipolar plate materials
- Reduced air pressure requirements
- Pressed plate architecture to address cost
- Optimized air delivery design
- Optimized power management design & configuration

Hydrogen generation

Ethanol reforming - Two platforms in development

- MesoFuel advanced membrane reactor (< 2 kWe)
 - Increase reactor pressure
 - Thermal integration improvements
- Hestia with rapid cycle PSA (>
 - 2 kWe)
 - With 100mV fuel cell voltage improvement, efficiency target can be reached with optimization of current Hestia design
 - With 20mV fuel cell voltage improvement, efficiency target can be reached with integration of CO₂ adsorption (AER) into Hestia process

PEMFC – single cell performance improvements

- PEMFC reduced system parasitic loads
 - High efficiency DC/DC converter development
 - High voltage converter for compressor operation
 - Low voltage converter for battery charging and auxiliaries
 - Data indicate efficiencies of 95+% may be possible
 - Current work and next steps
 - Test the converter in a system
 - Test self-start operation

PEMFC – forecast fuel cell system performance improvement

Hestia reformer - new reactor design

- Designed for ease of manufacture, assembly
- Reduced pressure drop across combustor/flue gas path
- Enhanced thermal integration
- Streamlined balance of plant
- Increased operating pressure / H₂ recovery
- Status
 - -Fabrication, assembly completed fall 2007
 - -Testing initiated December 2007
 - -Initial ethanol tests performed January 2008
 - -Preparing for next phases of tests April 2008

Hestia reformer – initial results

New reformer
reactor has been
tested as standalone
system, using
simulated PSA offgas as heat source
Results to left show
expected H₂
generation efficiency
based on reformer
test results +
potential PSA
recoveries

Meso reformer – performance mapping of single module completed

Metric	Target	Status (4/15/08)
H ₂ purity	> 99.9%	> 99.9%
Thermal efficiency	> 70%	65 - 67%
H ₂ production, slpm	5-6 (10 module)	0.6 @ 65 - 67% efficiency (single module)
H ₂ flux, sscm/cm ²	15-20	15-17

= 575 - 640 C

- $P_{feed} = 70 175 psig$
- $P_{prod} = 5 psig 500 mbar$

$$S/C = 4.5$$

4.5

Meso reformer – summary of flux and efficiency

AER – dynamic model for AER process steps (U South Carolina)

PSA model adapted to PSA model adapted to include reforming reactions

Model has informed experimental apparatus designs

- Bed sizing
- Cycle times
- Temperatures
- CO₂ breakthrough
- Purge gas requirements
- Status: Calibrating model with experimental results. Model breakthrough times are similar to test data
- include reforming reactions
- Model has informed experimental apparatus designs
 - Bed sizing
 - Cycle times
 - Temperatures
 - CO₂ breakthrough
 - Purge gas requirements

Status: Calibrating model with experimental results. Model breakthrough times are similar to test data

AER –experimental proof of concept

The above chart demonstrates four consecutive AER cycles successfully demonstrated on small reactor with ethanol-water mixture (S/C=6, 70 psig)

 Chart shows consecutive cycles with Ethanol on larger reactor (S:C =4.5)

Table below is total cycles on larger reactor

through May 2008

2	AER Flow	Number of Cycles	
	EtOH	44	
	CH4	20	
6	CO2	66	

AER – full scale experimental results with integrated combustor

- Currently evaluating cycle timing, temperature profiles, heat balance
- –Reactor and test stand specifications:
 - Natural gas or ethanol
 - -1 to 5 kWe
 - Regenerate with nitrogen, steam or other
 - All heat provided by combustion
 - Measure H_2 production enhancement as well as CO_2 breakthrough in bed

AER – novel adsorbent materials (Cal Poly Pomona)

SEM of monolithic MgO aerogel (left) and xerogel (right)

- Amorphous magnesium oxide (MgO) ambigel and xerogel materials
- -Significant potential for increased adsorption capacity
- -Status:
 - Several batches synthesized and currently being analyzed by IE
 - Further batches planned

System level performance assessment (Sandia)

- Collaboration with Sandia National Labs to assess potential performance of possible system architectures
- Part of Sandia's contribution to IEA-HIA Task 18
- Status (4/15/08):
 - Collaboration launched in March 2008
 - System model adapted to capture IE's approach
 - Initial results show 35% fuel-toelectric efficiency based on historical Hestia reformer data, new fuel cell data and parasitic power losses
- Next steps
 - Consider other system architectures
 - Continue to update models with experimental data
 - Form basis for go/no-go in July 2008

Future Work

FY08

- Go/No-Go (July 2008): Determine system architecture leading to reaching technical objectives
 - Go decision will be followed by proceeding to development and testing of a prototype PEMFC power system

FY09

- Milestone (January 2009): Complete engineering design of integrated power system
 - Milestone followed by in-house system testing
- Go/No-Go (July 2009): Validation of the prototype power system's ability to meet performance targets will be complete
 - Go decision will be followed with continuing to the field demonstration of this system

Summary

Summary of technical progress highlights

System	Baseline	Status (4/15/08)
Fuel cell system efficiency	50%	57%
Hestia hydrogen generator	Sophisticated mechanical design	Design for manufacture and assembly
Meso hydrogen generator efficiency	50%	65 – 67%
Adsorption enhanced reformer	Concept on paper	Experimental proof of concept

-Approach: Develop portfolio of technologies in Project Year 1 (Jul-07 – Jul-08) to determine best architecture for meeting DOE objectives for stationary fuel cell power -Partners -IE in US (lead) & UK - U of South Carolina - Cal Poly Pomona - Sandia Nationa Labs -Future work: Down-select technologies then engineer, test and demonstrate new generation PEMFC power system