Hydrogen, Fuel Cells & Infrastructure Technologies Program, 2008 Annual Review Arlington, Virginia – June 9-13, 2008

Advanced Cathode Catalysts

PI - Organization

- Radoslav Adzic Brookhaven National Laboratory
- Paolina Atanassova Cabot Superior MicroPowders
 - Plamen Atanassov University of New Mexico
 - Karren More Oak Ridge National Laboratory
 - **Debbie Myers** Argonne National Laboratory
- Andrzej Wieckowski University of Illinois Urbana-Champaign
 - Yushan Yan University of California Riverside
- **Piotr Zelenay** (Project Lead) Los Alamos National Laboratory

Project ID: FC3

This presentation does not contain any proprietary, confidential, or otherwise restricted information

<u>Timeline</u>

- Start date: January 2007
- End date: Four-year duration

Budget

- Total funding estimate:
 - DOE share: \$10,000KContractor share: \$445K
- FY07 funding received: \$2,046K
- FY08 funding estimate: \$2,800K

Barriers

- A. Durability (catalyst; electrode)
- **B. Cost** (catalyst; MEA)
- **C. Electrode Performance** (ORR kinetics; O₂ mass transport)

2010 Technical Targets

(from DOE's MYPP Table 3.4.12)

- Platinum group metal loading:
 0.3 mg_{PGM}/cm²
 (both electrodes)
- Cost: < 5 \$/kW
- Activity (PGM catalysts):
 0.44 A/mg_{Pt} at 0.90 V_{iR-free}
 720 μA/cm² at 0.90 V_{iR-free}
- Activity (non-PGM catalysts):
 > 130 A/cm³ at 0.80 V_{iR-free}
- Durability with cycling: 5,000 hours at T ≤ 80°C 2,000 hours at T > 80°C
- **ESA loss:** < 40%

Participating Organizations, Roles, Key Personnel


```
The University of New Mexico
```


R. R. Adzic (PI), W-P. Chen, K. Sasaki, M. Vukmirovic, J. Wang, W-P. Zhou

chalcogenide-based catalysts

A. Wieckowski (PI), P. K. Babu, A. Bonakdarpour, C. Delacôte, H. T. Duong

precious metal-free catalysts; characterization

P. Zelenay (PI), Z. Chen, J. Chlistunoff, H. Chung, S. Conradson,

F. Garzon, C. Johnston, G. Purdy, T. Rockward, J. Valerio, G. Wu

open-frame catalyst structures

P. Atanassov (PI), K. Artyushkova, D. Konopka, S. Pylypenko

ICRIVERSITY of california – nanostructure catalyst structures

characterization & durability

D. Myers (PI), A. J. Kropf, M. Smith, X. Wang

Y. Yan (PI), S. Alia, Z. Chen, P. Larsen, L. Xu,

characterization

K. More (PI)

- fabrication & scale-up

CABOT P. Atanassova (PI), B. Blizanac, G. Rice, Y. Sun

Main objective:

Develop oxygen reduction reaction (ORR) catalyst, alternative to pure platinum, capable of fulfilling cost, performance and durability requirements established by the DOE for the polymer electrolyte fuel cell (PEFC) cathode

Other objectives:

- Design, synthesize and characterize new catalyst supports and electrode structures for new-generation ORR catalysts
- Determine ORR mechanism on newly developed catalysts via extensive physicochemical characterization, electrochemical and fuel cell testing
- Optimize electrode with new catalysts and structures for maximum performance and catalyst utilization
- Evaluate catalyst stability; minimize performance loss over time
- Assure path forward for fabrication and scale-up of viable catalysts

Three classes of ORR catalysts

- Catalysts with ultra-low platinum content (stable metals or alloys as cores; non-precious-metal core catalysts; mixed metal shells for higher ORR activity)
- Chalcogenide-based catalysts (surface chalcogenides; chalcogenides with non-precious metal core)
- Precious metal-free catalysts (low- and high-temperature catalysts based on transition metals precursors)

Novel electrode structures for cathode catalysts

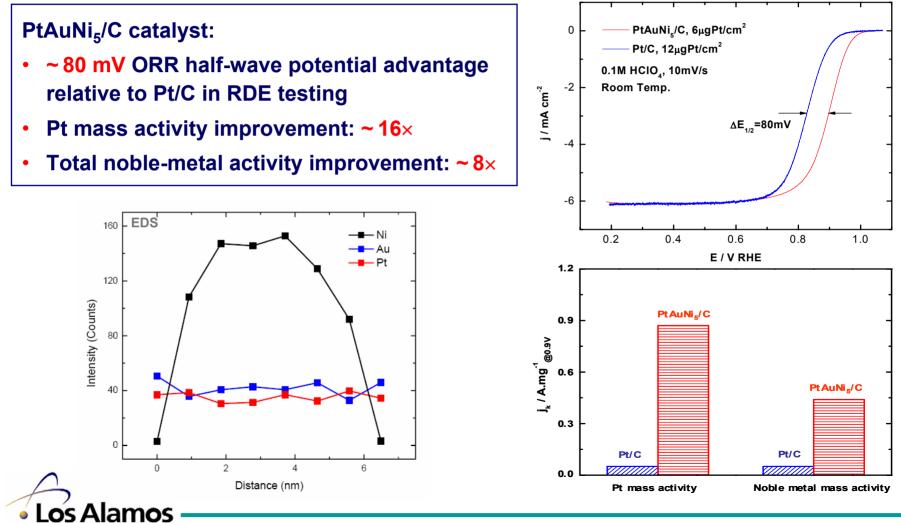
- Open-frame catalyst structures (microemulsion and other techniques)
- Nanostructures for maximum catalyst utilization and effective mass transport

Characterization, active-site and ORR mechanism determination, modeling

Performance durability

- Long-term fuel cell performance
- Performance degradation mechanism

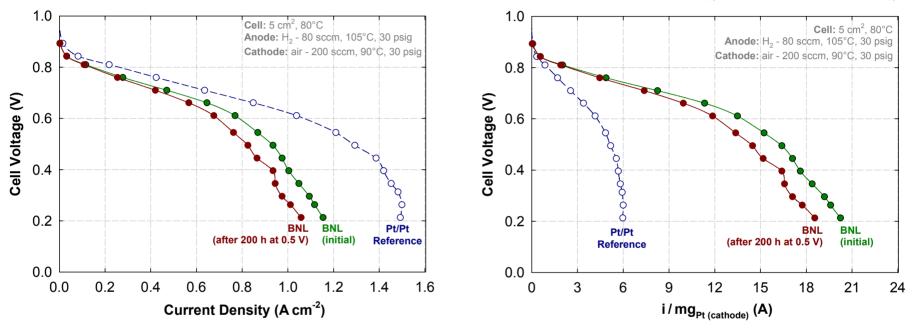
Fabrication & scale-up of selected, practically viable cathode catalysts


Milestones

- <u>Dec 07</u>: Scale up synthesis of core-shell Se/Ru-Fe/C catalyst for fuel cell testing – achieved
- <u>Mar 08</u>: Achieve 1.5 A/mg_{Pt} (or 0.40 A/mg_{Pt+Pd}) with a Pt_{ML}/Pd₃Fe/C catalyst ongoing; complete electrochemical characterization of composite catalysts based on different transition metals – achieved
- <u>Apr 08</u>: Demonstrate nanotubes/nanofibers support with electronic conductivity comparable with carbon achieved
- Jun 08: Demonstrate (i) uncatalyzed and (ii) precious metal/non-precious metal catalyzed carbon network formed in a spray pyrolysis sol-gel derived mesoporous silica matrix – modified (a more promising approach developed & demonstrated)
- <u>Aug 08</u>: Complete characterization of the oxygen reduction active site on selected non-precious metal nanocomposite catalyst – ongoing
- <u>Sep 08</u>: Achieve stability of Au-clusters-stabilized Pt/Pd/C with a E_{1/2} loss < 10 mV in 100,000 potential cycles ongoing; optimize heat-treatment procedure to remove surface Se from Se/Ru/C catalysts ongoing; determine oxidation state, chemical composition, and stability of catalysts in advanced cathode catalyst classes as a function of potential and time using *in situ* and *ex situ* X-ray absorption spectroscopy and electrochemical measurements ongoing (six catalysts characterized)
- Go/no-go: Research on Te/RuFe/C stopped (poor fuel cell performance)

Ultra-low Pt Content Catalysts: Overview; PtAuNi₅/C Catalyst

- Mixed Pt-metal monolayer catalysts (e.g. PtAuNi₅/C)
- Transition-metal core/precious-metal shell catalysts (e.g. PtAuNi₅/C; Pt_{ML}Pd₃Fe/C)
- Stable-metal core/precious-metal shell catalysts (Pt/Pd/C; Pt/Pd/Ru/C; Pt/Re/C)

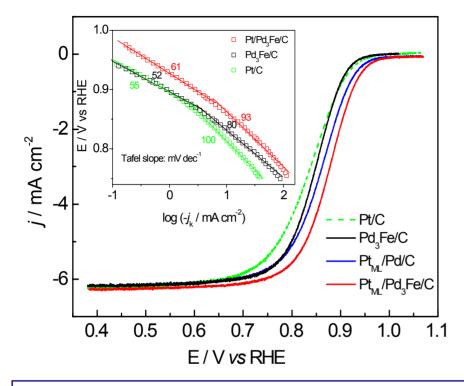


Current-based Comparison

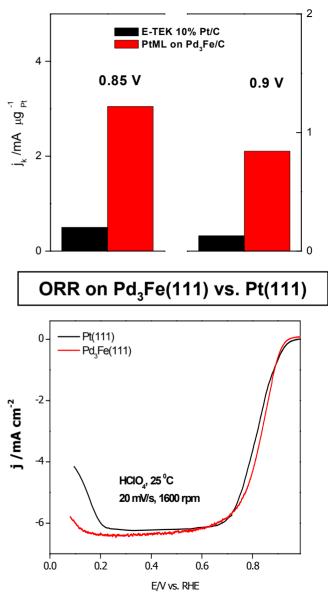
BNL: 20 wt% Pt/C anode - 0.21 mg_{Pt} cm⁻²; 20 wt% **PtAuNi₅/C cathode** - 0.21 mg cm⁻² **Reference:** 20 wt% Pt/C anode - 0.21 mg_{Pt} cm⁻²; 20 wt% **Pt/C cathode** - 0.25 mg_{Pt} cm⁻²

Pt-mass-based Comparison

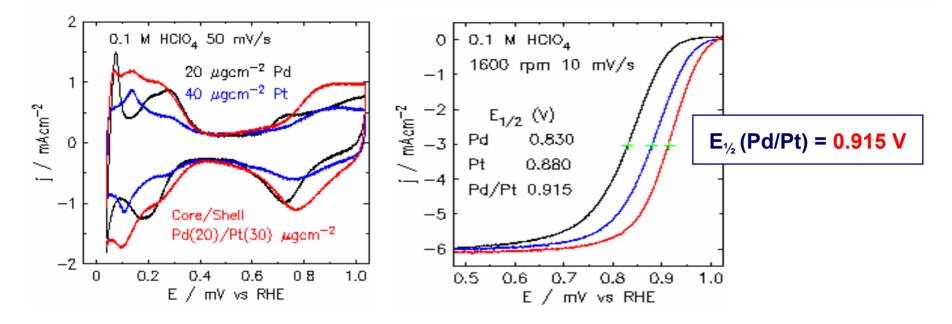
BNL: 20 wt% Pt/C anode - 0.21 mg_{Pt} cm⁻²; 20 wt% **PtAuNi₅/C cathode** - 0.21 mg cm⁻² **Reference:** 20 wt% Pt/C anode - 0.21 mg_{Pt} cm⁻²; 20 wt% **Pt/C cathode** - 0.25 mg_{Pt} cm⁻²

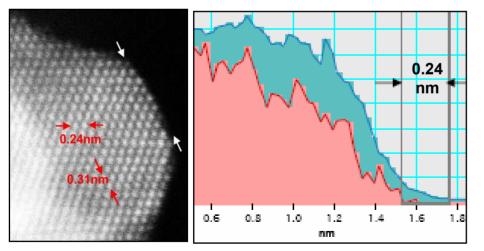


- PtAuNi₅ catalyst (not optimized) showing ~ 3.3× Pt-mass performance advantage over a reference Pt catalyst performance in the entire range of fuel cell voltage
- Challenges: (i) performance stability of the alloy catalyst; (ii) uniformity of the Au layer on top of Ni core; (iii) formation of separate Au particles (XRD data)

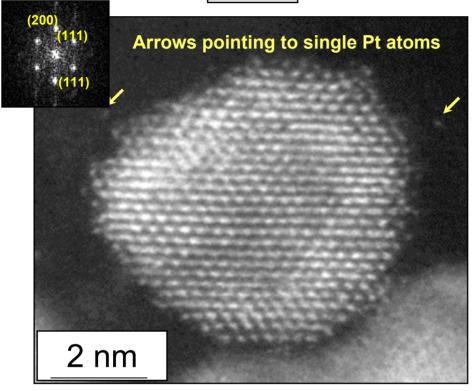

Ultra-low Pt Content Catalysts: Pd₃Fe-based Systems

Pt/C: 10 μ g_{Pt} cm⁻²; Pd₃Fe/C: 10 μ g_{Pd} cm⁻²; 0.1 M HClO₄; 10 mV s⁻¹

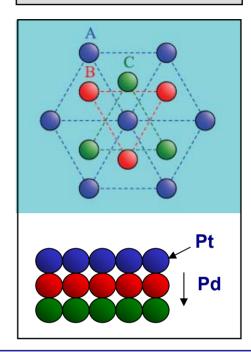



- "Intrinsic" ORR activity of Pd₃Fe(111) comparable to that of Pt(111)
- Challenge: Preventing Fe dissolution

Ultra-low Pt Content Catalysts: Pd/Pt/C System & Layer-by Layer Growth

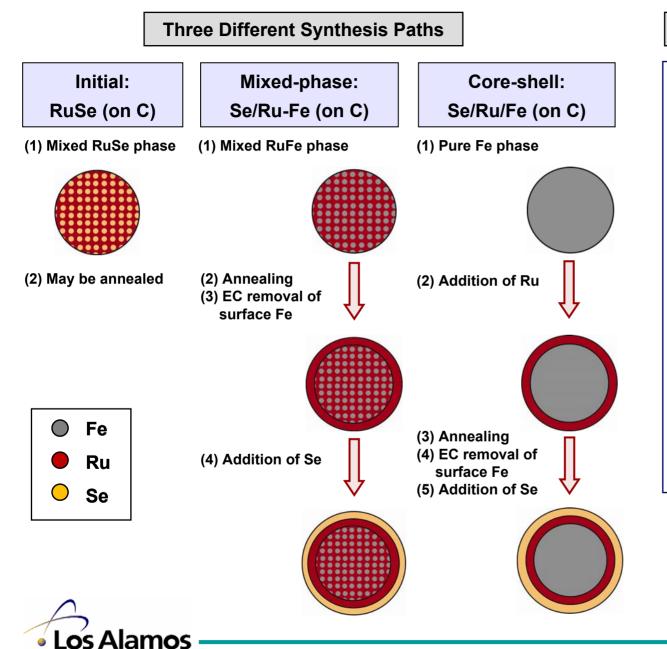


- Pd_{core}–Pt_{shell} catalysts, 1-4 ML-thick by Z-contrast TEM imaging and EELS chemical mapping
- 5-nm Pd core with 4-ML Pt shell, with Pt and Pd loading of 30 and 20 μg cm⁻², respectively, exhibiting activity equivalent to 2.5× that of reference Pt catalyst (8 nm, 40 μg cm⁻²)


Ultra-low Pt Content Catalysts: Pd/Pt/C – An Ideal Core-Shell Particle

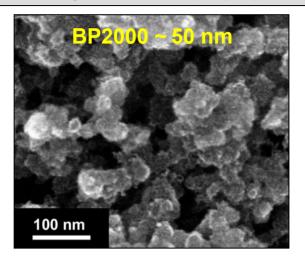
TEM

- Complete core-shell particle: ~ <u>1-nm Pt</u> shell uniformly covering ~ <u>2-nm Pd core</u>
- Pd-core showing primary faceting of (111) planes (particle oriented with Pd-ZA=[011])

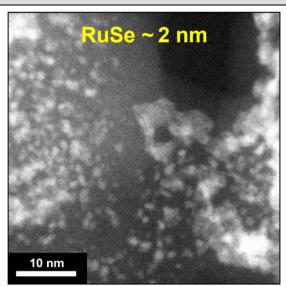

EXAFS & ICP Analysis

- Coordination numbers (EXAFS): Pt-Pt : 6.5; Pt-Pd : 3.3
- ICP: 26 at% Pt (as expected for 4 nm nanoparticles
- EXAFS/ICP → Pt monolayer on Pd core; 4.2 nm nanoparticles

Chalcogenide-Based Catalysts: Approach and Synthesis


Approach

- Replace Pt (shell) with less expensive Ru
- Optimize performance of carbon-supported RuSe
- Replace most of Ru with Fe using mixedphase or core-shell structure
- Additional bonus: Ru more tolerant than Pt to cathode feed stream poisons, such as CO and NO_x


Chalcogenide-Based Catalysts: 10 wt% RuSe/C

0.9

SEM image of RuSe/C (as-prepared)

TEM image of RuSe/C (as-prepared)

0.8 0.8 0.7 0.6 0.5 0.4 0.2 0.2 0 2 4 6 Current Density (A mg⁻¹_{Bu} cm⁻²)

<u>Anodes</u>: 0.25 mg_{Pt} cm⁻² (ELAT); H₂ 300 sccm 30 psig; <u>Cell</u>: 80°C <u>Cathode</u>: 0.067 mg_{Ru} cm⁻² (RuSe/C); 0.16₅ mg_{Ru} cm⁻² (Ru/C); air - 500 sccm, 30 psig

Voltage-current plots vs. mass of Ru

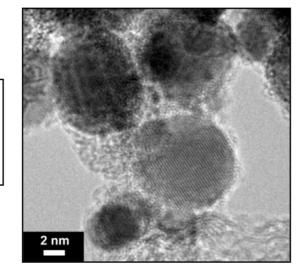
- High dispersion of RuSe catalyst achieved
- Cell performance of 10 wt% RuSe/C comparable to that of 20 wt% Ru/C (wt% refers to Ru + Se; actually 7 wt% Ru)
- Per Ru mass, performance of 10 wt% RuSe/C superior to 20 that of wt% Ru/C

Chalcogenide-Based Catalysts: Ru Replacement by Fe in Se/Ru/Fe/C

Synthesis Steps

(1) Form Fe core (reduce FeCl₃) Add Ru shell (reduce RuCl₃)

(2) Anneal


(3) Remove Fe from surface (electrochemically)

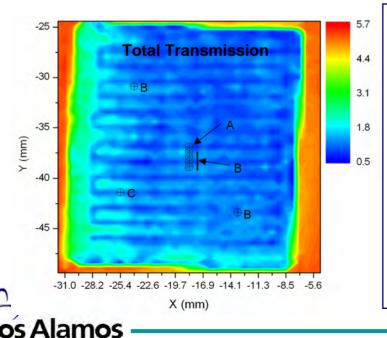
(4) Add Se (reduce SeO₂)

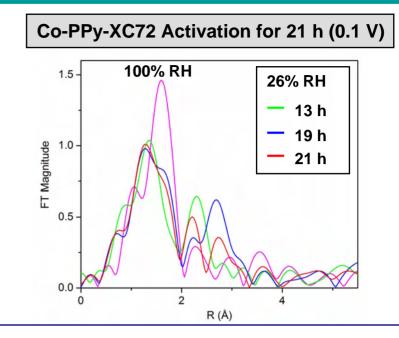
Sample	EDAX		
	Ru content	Fe content	Se content
	(at%)	(at%)	(at%)
Step (1)	47	53	-
Step (3)	67	33	-
Step (4)	64	28	8

TEM Image

- After Step 3
- Ru/Fe: ~8 nm
- Evident lattice structure

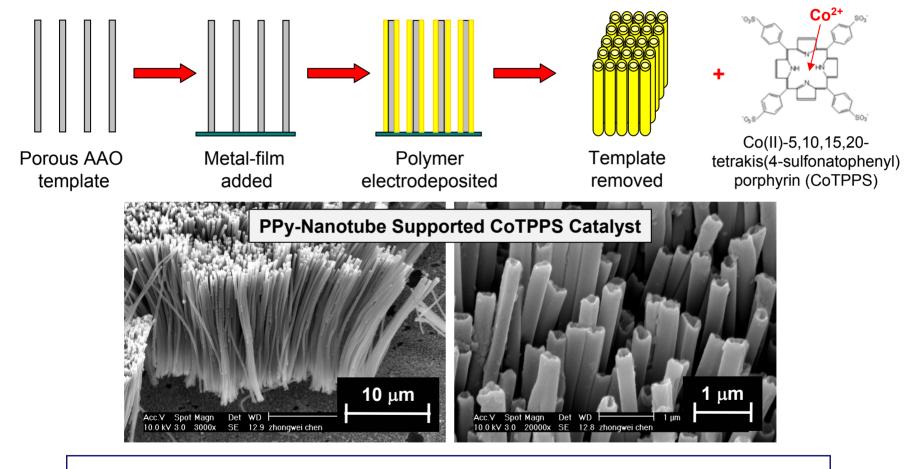
- Fe content retained at 33 at% after Step 3
- Improvement over Se/RuFe/C "mixed-phase" catalyst (20 at% Fe)
- Indication of "core-shell" structure with new synthetic approach




2008 HFCIT Annual Program Review, Arlington, VA, June 9-13, 2008

Catalyst Composition After Successive Steps

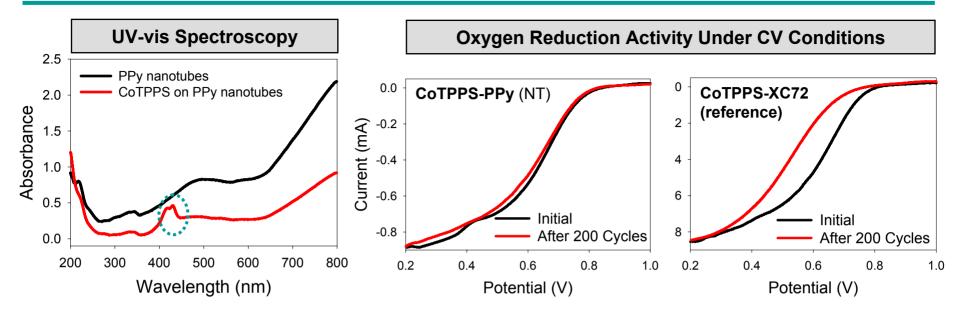
Co-PPy-XC72: In situ X-ray Absorption

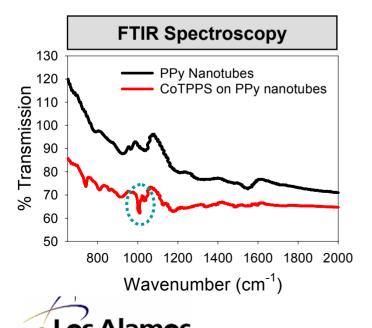


- A cell designed and fabricated at ANL for *in situ* EXAFS and XANES studies of low-Z metals
- Fluorescence mapping revealing (i) higher Co concentration in channels than below lands (not shown); (ii) loss of Co during activation
- Catalyst structure at 0.1 V, 100% RH and >0.4 V, 26% RH: six Co-O/N bonds at 2.06-2.08 Å
- Two phases at < 0.3 V, 26% RH:
 - Co-Co at 2.83 Å; Co-O at 2.11 Å (H_2O) and 1.92 Å (OH)
 - Co-Co bond at 3.10 Å; Co-O bond at 2.05 Å, a single OH bridge between Co centers

Precious Metal-Free Catalysts: Overview; CoTPPS (NT) System

- Thermally-untreated ORR catalysts, e.g. Co-PPy-XC72, Co-TPPS-NT
- Heat-treated (pyrolyzed) catalysts, e.g. PPy-, PANI-based, N-free catalysts

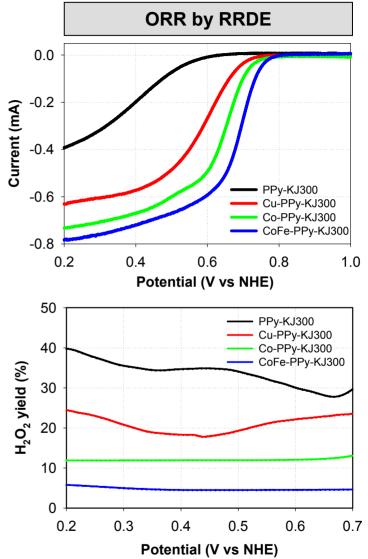



CoTPPS – active ORR catalyst

Los Alamos

• PPy – catalyst anchor for better mass transport, durability, and activity

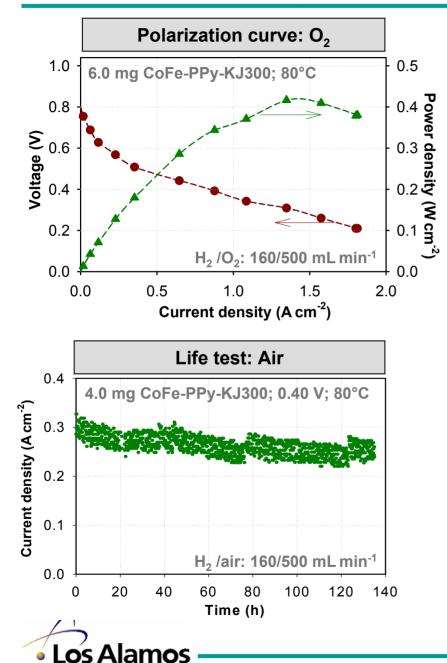
Thermally-untreated CoTPPS-PPy (NT) Catalyst: Characterization & Durability



- New thermally-untreated catalyst demonstrated
- Spectroscopy showing good anchoring of CoTPPS to the PPy nanotubes
- After 200 cycles:
 - CoTPPS-XC72 ΔE_{1/2} ~100 mV
 - CoTPPS-PPy (NT) $\Delta E_{\frac{1}{2}} \sim 15 \text{ mV}$
- Catalyst durability much improved relative to that of CoTPPS supported on carbon (XC72)

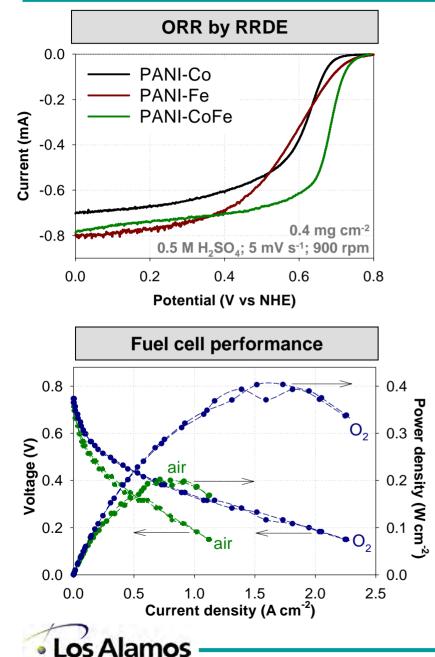
Heat-treated Catalysts: Metal-PPy-KJ300 System

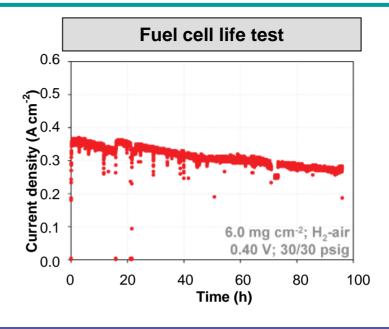
TEM of CoFe-PPY-KJ300 0.0 -0.2 Current (mA) -0.4 -0.6 -0.8 0.2 5 nm 2 nm 50 Heat-treated catalysts: PPy, PANI, and other 40 complexes of Co, Cu, Fe, and Ni used as precursors H₂O₂ yield (%) 30 in synthesis of transition-metal catalyzed nitrogendoped and nitrogen-free ORR catalysts 20 E_{1/2} of CoFe-PPy-KJ300 reaching 0.7 V


- H₂O₂ yields reduced to about 5% for the best performing catalyst (CoFe-PPy-KJ300)
- Crystalline, metallic, phase detected by TEM and in situ XAFS

0.4 mg *Metal-PPy-KJ300* cm⁻²; 0.5 M H_2SO_4 5 mV s⁻¹; 900 rpm

CoFe-PPy-KJ300 Catalyst: Fuel Cell Performance

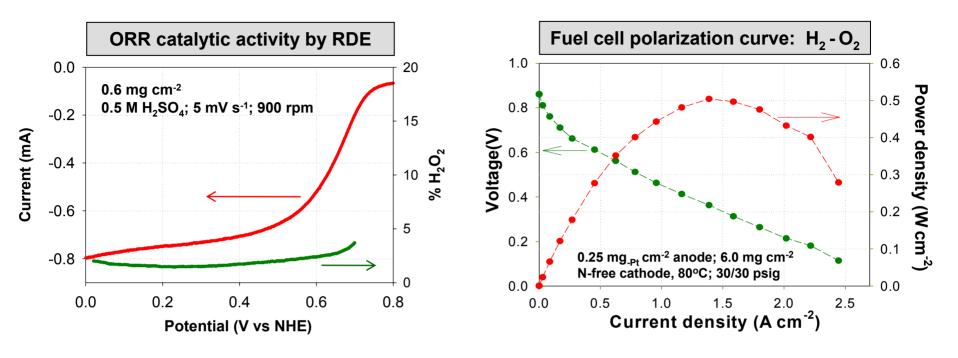



Cross-sectional SEM image of MEA

CoFe-PPy-KJ300 layer thickness: • <i>ca.</i> 100 μm at 6.0 mg cm ⁻² Volumetric current density (O ₂):				
• 0.40 V:	17 A cm ⁻³			
• 0.20 V:	37 A cm ⁻³			
Good performar	nce stability at 0.40 V.			

Good performance stability at 0.40 V, with less than 10% degradation over 130 hours; flooding the likely cause

Polyaniline-derived Catalysts: RRDE & Fuel Cell Testing

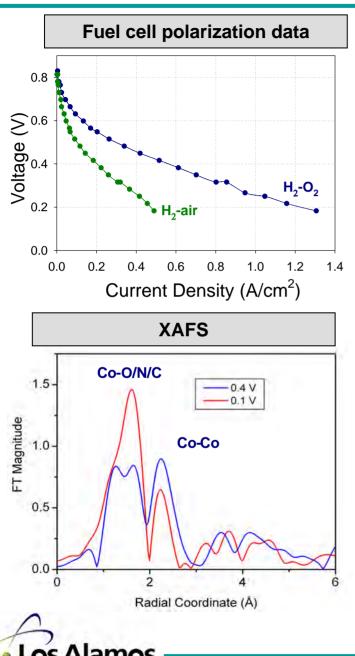


- Combining Co and Fe produces the best catalytic activity and less than 4% H₂O₂ yield (ring data not shown)
- Overall performance similar to that of CoFe-PPy-KJ300 catalyst

O ₂ (volumetric):		Air (volumetric):	
0.60 V:	2 A cm ⁻³	0.60 V:	1 A cm ⁻³
0.40 V:	13 A cm ⁻³	0.40 V:	6 A cm ⁻³
0.20 V:	39 A cm ⁻³	0.20 V:	19 A cm ⁻³

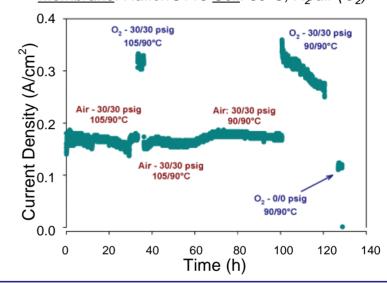
 $0.25~mg_{\mbox{-}Pt}\,cm^{\mbox{-}2}\,$ anode (ELAT); 6.0 $mgcm^{\mbox{-}2}$ FeCo-PANI-KJ300 cathode, 80°C

New Nitrogen-free Fe-based Catalyst (Heat-treated)

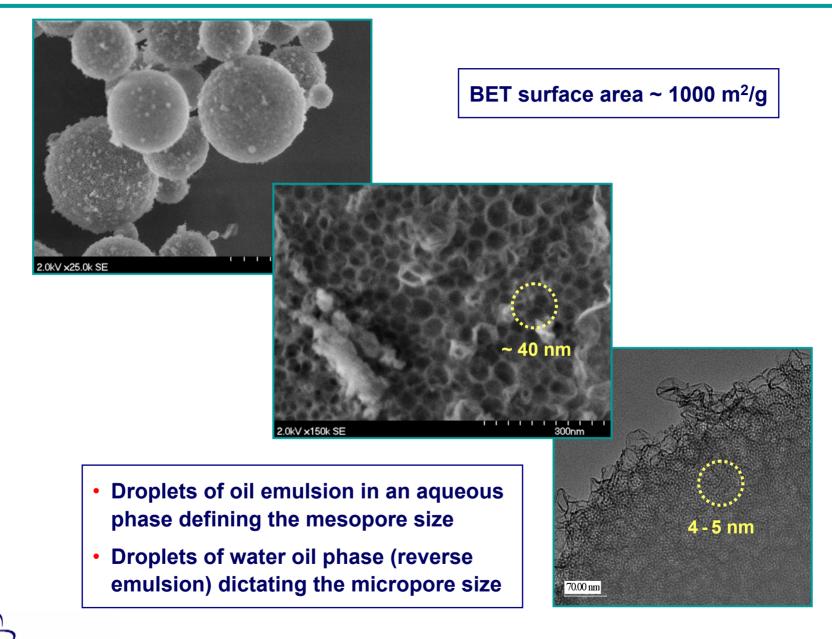


- High ORR half-wave potential: ~ 0.7 V
- H₂O₂ yield reduced to ca. 2% between 0.1 and 0.6 V
- Catalyst showing good performance stability for more than 100 hours
- Volumetric current density (O₂):

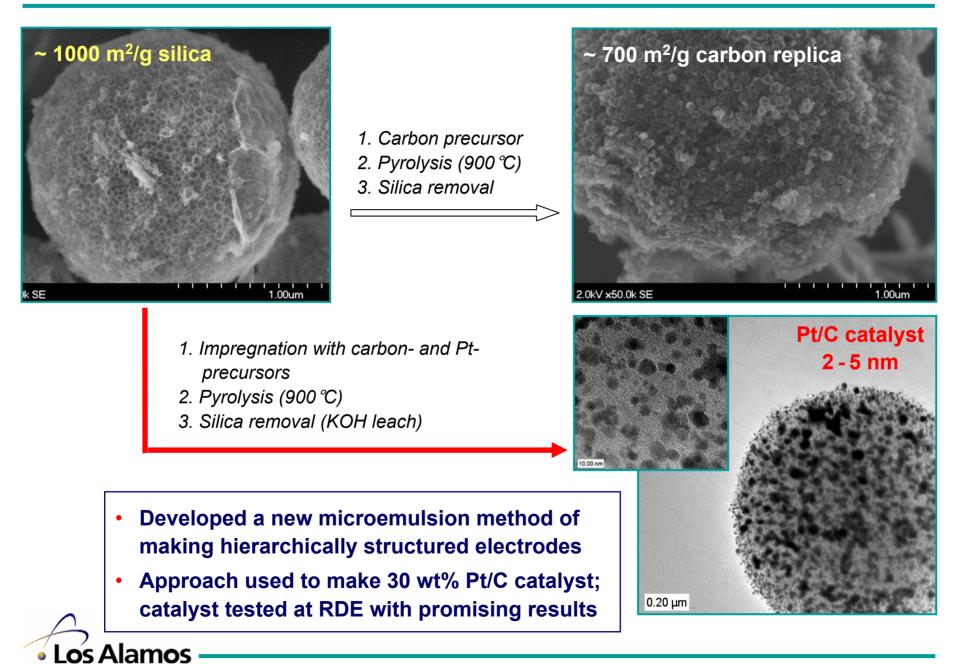
0.60 V:	8 A cm ⁻³
0.40 V:	22 A cm ⁻³
0.20 V:	40 A cm - ³



EDA-derived Catalyst: FeCo-EDA-KJ300


Fuel cell life test

<u>Anode</u>: 0.2 mg cm⁻² 20% Pt/C (E-TEK); <u>Cathode</u>: 2 mg cm⁻² (V-i curves) or 4 mg cm⁻² (life test) **FeCo-EDA-KJ300**; Membrane: Nafion®115 Cell: 80°C; H_2 /air (O_2)



- Catalyst derived from ethylenediamine (EDA) complexes of Fe and Co
- In situ XAFS showing metallic Co not affected by potential and mobile Co-N/C/O species
- Respectable current density of 0.52 and 0.22 A cm⁻² generated at 0.40 V using oxygen and air
- Water accumulation affecting MEA performance
- Novel electrode structures needed

New Silica-templated Electrode Structures with Hierarchical Porosity

New Silica-templated Electrode Structures: Catalyzation

Future Work

Remainder of FY08:

- Synthesize sufficient amount of three most promising core-shell catalysts for fuel cell testing
 (ultra-low Pt content catalysts); perform fuel cell testing of core-shell catalysts at LANL
- Finish synthesis and performance testing, including fuel cell test, of Se/Ru-Fe/C catalyst
- Optimize synthesis and performance of heat-treated PANI-based and new N-free catalysts
- Develop system for direct electrochemical detection of H₂O₂ in polymer electrolytes
- Characterize oxidation state and chemical composition of (i) non-precious metal catalysts during
 the heat-treatment step of the preparation and (ii) ultra-low Pt and chalcogenide catalysts
- Demonstrate control of porosity and metal particle-size in silica-templated hierarchical catalysts
 FY09:
- Develop core-shell catalysts with acid-stable, well-protected cores as support for a Pt monolayer; initiate synthesis of nanoparticles with controlled shapes as substrates for Pt
- Increase non-precious metal content in chalcogenide catalysts to at least 50%; improve fuel cell
 performance of chalcogenide catalysts to the level expected based on the RDE testing
- Improve volumetric activity of catalysts based on heat-treated and untreated heteroatomic polymer nanostructures (nanofibers, nanotubes)
- Improve volumetric activity of thermally-treated nanostructured carbon-on-carbon catalysts
- Determine oxidation state and chemical composition of three selected advanced cathode catalysts as a function of potential and time using in-situ X-ray absorption and electrochemistry
- Investigate tri-phase interface in catalysts with hierarchically porous carbonaceous structure
- Optimize polymer nanostructure for oxygen transport in selected non-precious catalyst system

Summary

- Several "core-shell" catalysts offer more than threefold fuel-cell performance advantage per mass of Pt than a reference Pt/C catalyst in the entire range of the cell voltage and meet 2010 DOE performance targets
- Partial replacement of Ru by Fe in chalcogenide catalysts is possible without a significant drop in the ORR activity (half-wave potential of maximizing at ~ 0.75 vs. RHE)
- Thermally-untreated CoTPPS-PPy catalyst, supported on polypyrrole and synthesized electrochemically using an AAO template, exhibits good activity and greatly improved durability compared to the carbon-supported CoTPPS reference catalyst
- Several novel non-precious catalysts, derived from transition-metal complexes of PPy, PANI, and EDA using heat treatment, show high activity and selectivity in aqueous electrolytes as well as at the fuel cell cathode
- Susceptibility of carbon-rich non-precious catalysts to flooding, especially at high current densities, appears to be a major performance issue for nonprecious catalysts
- Novel electrode structures, either polymer- or carbon-based (including AAO- and silica-templated structures) have been developed for ORR catalysts, with very promising performance in preliminary testing

