

Diesel Fueled SOFC System for Class 7/Class 8 On-Highway Truck Auxiliary Power DE-FC36-04G014318

Dan Norrick Cummins Power Generation June 13, 2008

FC43

Cummins Power Generation

- Balance of Plant (blower, fuel supply, plumbing)
- Controls & power electronics
- System integration
- Sub and system testing

Protonex LLC

- "Hot Box" SOFC modules, heat exchange, high temperature insulation
- CPOX diesel fuel reformer
- Sub-system testing
- International Truck & Engine Corp.
 - Vehicle Requirements, Systems, Interface
 - On-vehicle test & evaluation

[®]Fort Wayne, IN This presentation contains no proprietary, confidential, or otherwise restricted information

2

INTERNATIONAL

Broomfield, CO

Generation

Power

Minneapolis, MN

Why Solid Oxide Fuel Cells (SOFC's)?

- Advantages
 - Greatly simplified fuel reformation for HC fuels (thermally matched, CO is fuel constituent, some Sulfur tolerance)
 - No water management in stacks
 - Potential for low / no precious metals (cost)
 - No external cooling required
 - High quality (high temperature) single waste heat stream
 - Good efficiency
- Challenges
 - Thermal management (start up, shut down, transients) startup time
 - Degradation
 - Zero net water diesel fuel reforming
 - Cost, cost, cost ("chickens'n'eggs")

Overview

Timeline

- Project start: 9/1/2004
- Placed on hold FY 2006; restarted Aug 2007
- Project end: 6/15/2009
- Percent complete: 40%

Budget

- Project funding
 - DOE share = \$3,225,611
 - Contractor share = \$1,732,938
- Funding received
 - FY07: \$800K
 - FY08: \$750K (to date)

Barriers

- Waterless reforming of Ultra Low Sulfur Diesel (ULSD) fuel
- Transient operation of solid oxide fuel cell (SOFC) system
- Power density, specific power (W/L, W/kg)
- Shock and vibration tolerance

Partners

- Cummins Power Generation (project lead)
- Protonex LLC (SOFC power module)
- International Truck and Engine (vehicle and installation)

Objectives

- On-vehicle demonstration and evaluation of a SOFC
 APU with integrated on board reformation of diesel fuel
- Develop transparent method of water management for diesel fuel (ULSD) reformation
- Develop controls to seamlessly start, operate and shutdown SOFC APU
- Evaluate hardening the SOFC APU to enable it to operate reliably in the on-highway environment
- Develop overall system for performance, size, cost and reliability targets

Milestones

FY	Qtr	Milestone
FY07	Q4	Program re-start Protonex replaces SOFCo hot section
FY08	Q1	Specifications finalized reviewed and adjusted to match PTX hot section
FY08	Q2	Protonex delivery of Module 1 Q3 delivery can be managed
FY08	Q4	System BOP design complete
FY09	Q1	Protonex delivery of SOFC sub-assembly (4-pack)
FY09	Q2	System ship from CPG to International Truck & Engine
FY09	Q3	Vehicle Tests Complete

Approach

	Analysis and design	Sub-system test and development	Laboratory testing
Balance of Plant	Supply and Regulation: Cathode air Anode air Fuel	Cathode air Anode air supply Fuel supply	BOP Assembled Wired Checked
Controls & Power Electronics	Control Fluid flows Load response Power Electronics DC Link Load management	Bench testing Control loop responses System simulation	Integrate MCU and control software Simulated system testing Demonstration of system operation
SOFC, Hot Box Fuel Reformer	Module scale-up Thermal analysis CPOX chemistry	Module operational bench testing	Stack simulators utilized for initial checkout Functional SOFC stacks assembled tested in hot box
System Integration & Packaging	General arrangement Shock & Vibration attenuation	Solid modeling (CAD) Stereolithography Vibration testing at module level	Validate system performance Operation across load range Transient response Efficiency
Vehicle Integration	Systems integration 12V DC bus 120V AC bus Fuel supply Coolant loop Mount & Connect	N/A	In-vehicle evaluation 12V and 120VAC load testing EMI / RFI testing Vehicle-level thermal testing Operation at extreme temperatures Power and efficiency Cab climate performance

System mechanical design

- Evaluated multiple module arrangements
- Selected system provides easy connection between Hot zones and cold balance of plant
- SOFC package size and weight based on successful commercial APU

System Arrangement

System Modeling Example

Battery State of Charge (SOC) for Different Load Scenarios

		Summer E	Extreme		Winter Extreme		
		Watts	Description	Watts	Description		
94%	Air Conditioning	1100	Continuous				
	Block Heating			1500	Continuous		
93%	Microwave	750	5 min at random	750	5 min at random		
	TV/ Stereo	250 90		250	120 min		
0.00/	VCR	100	90	150	120 min		
92% -	Computer	75	60 min	75	60 min		
	Coffee Maker	550	15 min	550	15 min		
91% -	Refrigerator	75	75% duty cycle, 5 min duration	75	50% duty cycle, 5 min duration		
	Battery Charging	260	Continuous	300	Continuous		
9%							
88% -	SOFC system car	n be ma	tched to				
88% - 87% - É	SOFC system car approximate avera modulated by e	n be mai nge load nergy s	tched to ls; peaks torage		— Winter Peak Case — Summer Peak Ca	e Ise	
88% - 87% - 86% -	SOFC system car approximate avera modulated by e	n be ma nge load nergy s	tched to ls; peaks torage		— Winter Peak Case — Summer Peak Ca	se	
88% - 87% - 86% - 85% -	SOFC system car approximate avera modulated by e	n be mai nge load nergy s	tched to ls; peaks torage		— Winter Peak Case — Summer Peak Ca	e se	
89% - 88% - 87% - 86% - 85% _	SOFC system car approximate avera modulated by e	n be ma nge load nergy s	tched to ls; peaks torage 4	6	— Winter Peak Case — Summer Peak Ca	e se	

Selected modular design

- 4 modules, 66 cells/module
- Target performance for complete APU (4 modules)

parameter	value	notes
power	14.3 A @ 185 V = 2640 W Gross Power	
ocv	264–276 V	4 modules in series
fuel flow at full load	18 ml/min	0.285 gal/hr ULSD
CPOX air flow	60 slpm @ 11 kPa	
cathode air flow	280 slpm @ 5.3 kPa	
hot zone thermal management air flow	<200 slpm @ <2 kPa	Provided by cathode blower
system efficiency	21% gross (2640 W) 17% net (2000 W)	DC/LHV

Protonex

- Demonstrated both atomization and vaporization of ULSD
 - <40 µm droplets at low feed pressure
 - Demonstrated with CPOX reactor and ULSD
- Stable operation for hundreds of hours
- Vaporizer for initial units, atomizer has long-term advantages
 - Atomizer requires less start-up energy
 - Extended maintenance intervals (>500 hours)

- Screened four catalysts
- Selected catalyst is capable of >93% carbon and H₂ selectivity at design flow rates without added water
- Stable performance
- Wide operating range in flow and O/C ratio

Diesel Flow, ml/min

Diesel ml/min		Wet Reformate Composition (%)					H_2	СО		
	O/C	N_2	H_2	CO	CO_2	CH_4	Ar	H_2O	Yield	Yield
6.0	1.1	50.6	21.9	23.9	0.50	0.24	0.61	2.2	0.93	0.97
5.0	1.1	50.8	21.5	23.8	0.49	0.40	0.61	2.5	0.91	0.96
1.0	1.5	57.0	15.9	16.9	4.2	0.05	0.68	5.4	0.82	0.83

SOFC cell performance

- Demonstrated improved performance with improved current collection
- Achieved 12.8 W / tube at design conditions, exceeds
 10 W / tube target for initial design

Reformer life testing

- Demonstrated steady operation over 500+ hours with selected catalyst
- No carbon formation
- CO and H₂ selectivity's stable and >90% over test
- Integrated igniters allow startup in < 5 minutes with either vaporizer or atomizer

Hot zone design

- Developed tightly integrated hot zone design
- Hot module includes:
 - Reformer
 - Stack
 - Recuperator
 - Tail-gas combustor
 - Mechanical structure
 - Insulation
- Design complete, first modules to be built Q3 2008

- Fabricate & test hot zones (Q3-Q4 2008)
 - Build single modules and 4-module sets
 - Test modules in furnace and in insulation packages
- Optimize bundle performance (Q4 2008)
 - Select current collection approach
 - Develop techniques to improve temperature uniformity
- Fuel feed system improvements (Q4'08, Q1'09)
 - Test CPOX with atomizer
 - Explore limits of atomizer operation
 - Develop maintenance procedure for vaporizer

- Reformer optimization
 - Investigate performance at part-load
 - Develop optimized start-up protocol
- Stack fabrication improvements
 - Demonstrate automation of key assembly steps
 - Demonstrate near-net-shape fabrication of key stack parts

Future Work

- Evaluate potential for improved blower match(es) and implement if feasible
- Complete structural evaluation and shock / vibration attenuation system design
- Complete the system BOP design (FY08 Q4)
- Assemble system at CPG and begin qualification and final tuning (FY09 Q1)
- Ship system ship to International Truck & Engine (FY09 Q2)
- Vehicle Tests Complete (FY09 Q3)

Summary

- Project successfully re-constituted following interruption, change of hot section partner
- Significant progress at Protonex on CPOX reformer, upscale of hot section module
- CPG system integration progressing consistent with contemporary commercial APU packaging
- On track to demonstrate a viable SOFC solution to anti-idling
- Future DOE support can accelerate production viability

Acknowledgements

Cummins Power Generation, Protonex LLC, and International Truck and Engine gratefully acknowledge the support of the DOE under Cooperative Agreement No. DE-FC36-04GO14318.

This support does not constitute an endorsement by DOE of the material expressed in this presentation.