

Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells

Pacific Northwest National Laboratory: Yong Wang Jun Liu Vilayanur Viswanathan Yuehe Lin Ja Hun Kwak Rong Kou Yuyan Shao Jun Wang Oak Ridge National Laboratory: Sheng Dai Qing Zhu

AFCC: Stephen Campbell

University of Delaware: *Jingguang Chen* Brian Willis

FC4

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Pacific Northwest National Laboratory

Operated by Battelle for the U.S. Department of Energy

Overview

Timeline

- Project start date Jan 2007
- Project end date Dec 2010
- Percent complete 25%

Budget

- Total project funding
 - DOE share \$4,234K
 - Contractor share \$255K
- Funding received in FY07
 - \$1,241K (federal, requested)
 - \$820K (federal, approved)
 - \$72K (cost share)
- Funding received in FY08
 - \$1,300K (federal, requested)
 - \$1,400K (federal, approved)
 - \$72K (cost share)

Barriers

- A. Durability of cathode catalyst supports
- C. Performance of cathode supported catalyst

Partners

- > AFCC– guidance on fuel cell testing
- Oak Ridge National Laboratory mesoporous carbon supports
- University of Delaware Model materials
- Pacific Northwest National Laboratory
 - Synthesis and test of cathode/fuel cell
 - project management

Objectives

Overall	Develop and evaluate new classes of alternative and durable high-performance cathode supports
2007	Provide fundamental understanding of Pt/support model systems
	Synthesize high surface area cathode supports
	Select the potential support with better stability than commercial carbon black support
2008	Identify lead cathode compositions with better durability than carbon black supported Pt cathode
2009	Identify compositions with 2X better stability than carbon black supported catalyst for cell demonstration.
2010	Demonstrate durability under accelerated test protocols that meet DOE lifetime criteria

Milestones, Schedule and Go/no-go Decisions

		Task Completion Date				
Task Number	Project Milestones	Original Planned	Revised Planned	Actual	Percent Complete	Progress Notes
1	Better stability of model Pt/WC	09/30/07	09/30/07	9/30/07	100%	completed
2	High surface area WC and CMO	09/30/07	12/31/07	12/31/07	100%	completed
2	Select carbon support	09/30/07	12/31/07	9/31/08	50%	Delayed ¹
2&3	Identify lead compositions	09/30/08	12/31/08		30%	On track
2&3	Identify compositions for cell test	09/30/09	12/31/09		0%	Not started
3	Demonstrate target durability	09/30/10	12/31/10		0%	Not Started

¹ delayed due to both the reduced budget in FY07 and a longer time to develop an appropriate test protocol

Go/no-go decisions:

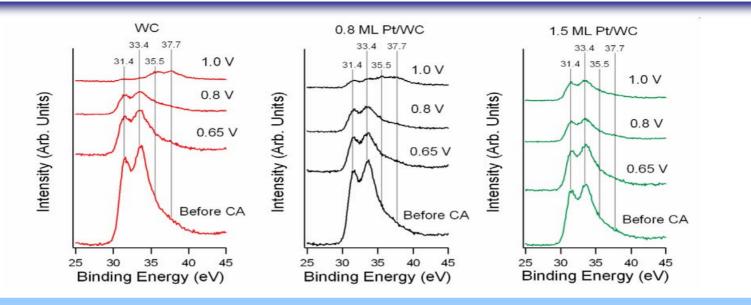
Year 1: Decided to use mesoporous carbon as both scaffold and as template for CMO synthesis Year 2: Continue effort if stable compositions can be identified

Year 3: Move forward with cell test if durable supported catalyst can be identified

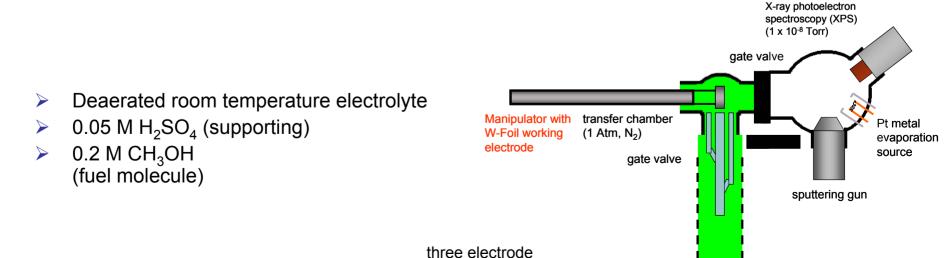
FY08 Revised Milestones

- Complete electrochemical evaluation of Pt/WC cathode stability
- Down-select carbon support from CNT, mesoporous carbon and carbon black
 - % drop in ECSA and lorr < 80% of drop for carbon black.
- Identify lead cathode compositions and microstructure
 - % drop in ECSA and lorr < 60% of drop for carbon black standard

Approach - Overall

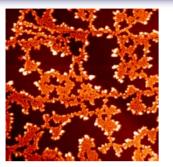

- Develop and evaluate new classes of alternative and durable cathode supports using graphitized carbons as scaffolds and protect the carbon surface with
 - Tungsten carbide (WC)
 - Oxycarbides
 - Conductive metal oxides (ITO)
 - SnO₂
 - TiO₂
- Enhance Pt dispersion and stability on these new classes of cathode supports

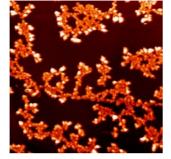
Approach – Specific Tasks

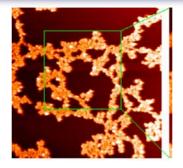

- Fundamental understanding of model systems with well defined structures and compositions.
- Synthesis of high surface area cathode supports based on carbon scaffolds.
- Characterization and electrochemical evaluation of cathode supports

Technical Accomplishments/Progress/Results

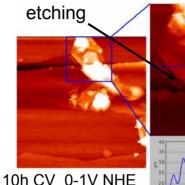
Model Cathode Material Studies In-Situ XPS and Electrochemistry

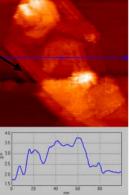



Deposition of Pt on WC improves stability at high potential limits

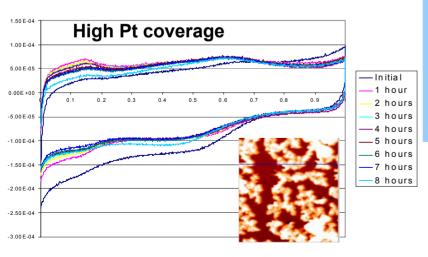


electrochemical cell (purged with N₂)


STM investigations of Electrocatalyst-Support **Interaction (Pt/HOPG)**



100 CV cycles 0-0.8V NHE No changes



Pre-anneal

Post-anneal 300C. 3h

Pt particles absent, carbon surface smooth, but shows signs of etching.

CV 0 to 1.0 V (NHE) 9 hours, 0.5M H2SO4 Steady decrease in Pt features with time associated with Pt aggregation

- For low Pt coverage, thermal stress alone does not induce changes in the Pt/C interaction. CV for 10 hours 0-1V V leads to total loss of Pt and signs of carbon etching.
 - For high Pt coverage, very little Pt loss during CV 0-1V for 9h.

Synthesis of High Surface Area Cathode Materials

- Development of novel ordered mesoporous carbon (OMC)
- Dispersion of Pt
 - Substrates: XC-72, carbon nanotubes (CNT) and OMC
 - Loading method : incipient wetness approach
 - Activation temperature effects
 - New method: Pt-nanoparticle to maintain constant Pt particle size

Metal oxide modification of XC-72

• SnO_2 , In_2O_3 , TiO_2 etc.

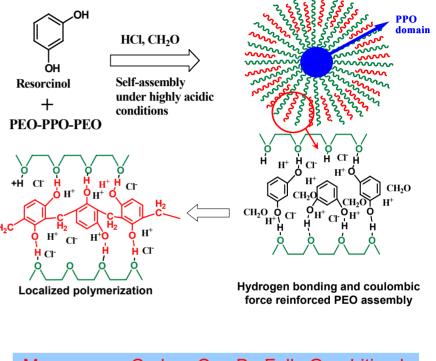
Synthesis of high surface area ITO and WC substrates

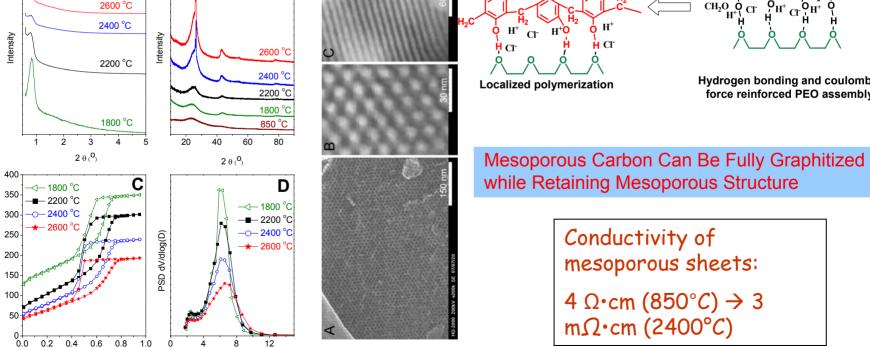
Synthesis of Highly Stable Mesoporous Carbons

Accomplishments:

Amount Adsorbed (cm³ STP/g)

Relative Pressure (P/P


Synthesis – Established the protocol for synthesis of highly stable mesoporous carbons retaining porosity under graphitization conditions. less expensive precursors

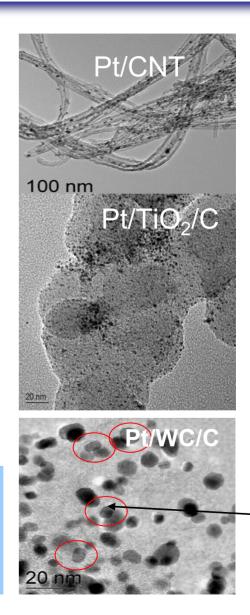

Pore Size (nm)

В

Processing –Mesoporous carbons were used to disperse conducting oxide materials.

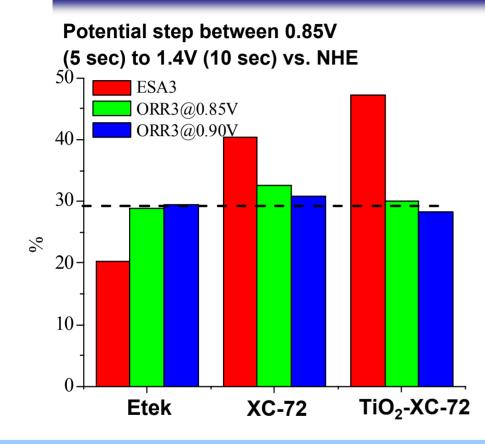
Α

Synthesis of High Surface Area Cathode Materials

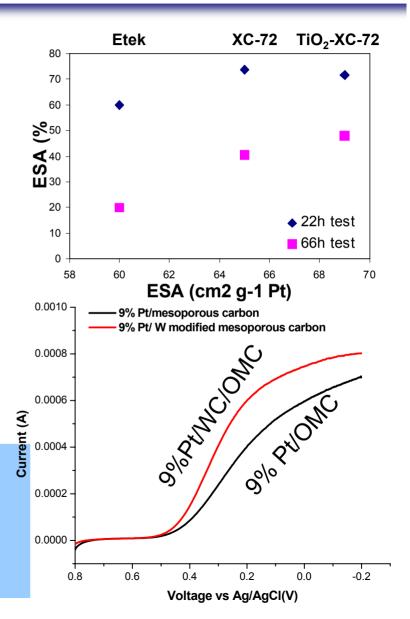

Matrix of supports and modifications

N	lodification	Vulcan X72	MWCNT	Meso- porous carbon	Graphene	
	none	•	•			
	TiO ₂	•				
	SnO ₂	•				
	ITO					
	WC			•		
	SiO ₂				•	
	•	Testing com	plete	Test in progress		

- Pt nanoparticles can be uniformly dispersed on carbon supports using an incipient wetness method
- Metal oxide modified Vulcan XC-72 were synthesized
 - The presence of metal oxide (TiO₂) stabilizes the dispersion of Pt


High surface area ITO and WC were synthesized

Pt preferably bonds to WC


Pt

Electrochemical Testing of Cathode Materials

TiO₂-XC-72 improved stability & activity over Etek
WC modification improves activity for Pt/OMC
Future:

- Increase stability while maintaining high activity
- Investigate other conductive metal oxides

Future Work

FY08

- Develop fundamental understanding of interfacial interaction on Pt/C and Pt/WC
- > Continue investigation of other conductive metal oxide modified XC-72
 - Replace XC-72 with CNT and OMC

FY09

- > Evaluate lead compositions under more severe conditions
 - Potential step between 1.4-0.6V to determine the effect of PtOx/Pt oxidation/reduction on support.
- Identify compositions with 2X better stability than carbon black supported catalyst for cell demonstration.

FY10

Demonstrate durability under accelerated test protocols that meet DOE lifetime criteria

Summary of Technical Accomplishments

- Demonstrated improved stability of WC in the presence of Pt and identified degradation of Pt/HOPG model system
- Developed conductive ordered mesoporous carbon (OMC)
- Demonstrated improved stability (% drop in ESA <70% of that of Etek) and activity (15% over Etek) with TiO₂-modified XC-72