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HIGHLY DISPERSED ALLOY CATALYST

• Start – May 1, 2007
• End – April 30, 2010
• 33% Complete

A. Performance
• Increase catalyst activity

B. Cost 
• Reduce Pt metal loading

C. Durability
• Increase cyclic durability

• Total project funding
– DOE share - $6.278M
– Cost share - $2.860M

• DOE Funding received in FY07
– $200K

• DOE Funding for FY08
– $1,600K

Timeline

Budget

Barriers

• Johnson Matthey Fuel Cells

• Texas A&M University

• Brookhaven National Laboratory

Partners
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HIGHLY DISPERSED ALLOY CATALYST
Technical Contributors

UTC Power:
T.T. Aindow, Elise Izzo, Panadda Madden, Sathya Motupally, Tom Jarvi

Johnson Matthey Fuel Cells:
Sarah Ball, Sarah Hudson, Rachel O’Malley, Brian Theobald, Dave 

Thompsett, Graham Hards

Brookhaven National Lab:
Wei-Ping Zhou, Jia Wang, Radoslav Adzic

Texas A&M University:
Perla B. Balbuena, Gustavo Ramirez-Caballero, Yuguang Ma, Rafael 

Callejas-Tovar, Julibeth Martinez de la Hoz
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Characteristics DOE 2010 Target DOE 2015 Target

Pt group metal (total content) [g/kW] 0.3 0.2

Pt group metal (total loading) [mg/cm2] 0.3 0.2

Mass activity @ 900mV [A/mg] 0.44 0.44

Specific activity @ 900mV [μA/cm2] 720 720

Cyclic durability @ <80°C / >80°C [h] 5000/2000 5000/5000

ECA Loss [%] <40 <40

Cost [$/kW] 5 3

DOE 2010 and 2015 Technical Targets

HIGHLY DISPERSED ALLOY CATALYST
Objective
Develop structurally and compositionally advanced cathode 
catalyst that will meet DOE 2010 targets for performance 
and durability
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Month/Year Milestone or Go/No-Go Decision

August 2008 Milestone: Bench scale dispersed alloy catalyst formulation

September 2008 Go/No-Go decision: Verification of down-selected dispersed alloy catalyst

October 2008 Milestone: Bench scale core/shell catalyst formulation

November 2008 Go/No-Go decision: Verification of down-selected core/shell catalyst

HIGHLY DISPERSED ALLOY CATALYST
Milestones
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Core/Shell Catalyst
• Pd/Pt
• Ir/Pt
• Co/Pd/Pt
• IrCo/Pt
• PdxCoy/Pt
• Pt/Au

Modeling
• Core/shell structural
stability
• Core/shell durability
• Impact of shell 

thickness
• Impact of sub-layer

composition

Alloy Catalyst
• Ir-containing ternary
• Alternative support
• Alloy fundamentals
• Synthesis optimization

HIGHLY DISPERSED ALLOY CATALYST
Approach
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HIGHLY DISPERSED ALLOY CATALYST
Strategy
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Surface Segregation Model for 
Pt3M Alloys

Y. Ma and P. Balbuena, 
Surface Sci. 602, 107-113, 
(2008)

HIGHLY DISPERSED ALLOY CATALYST
Modeling – Segregation energies for Pt3M alloys
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Eseg(eV) Pt3Ir(111) Pt3Co(111) Pt3Fe(111) Pt3Ni(111)
Under 0.25 
ML of O

-0.04 0.14 0.45 0.20

-0.54Without 
adsorption

-0.61 -0.41 -0.38

Eseg: surface segregation energy
Positive Eseg: core/shell structure energetically unfavorable

• Segregation behavior changes in the presence of oxygen
• Most transition metals change from Pt surface segregation in the 
absence of oxygen to anti-segregation with oxygen

CORE/SHELL STABILITY
Effects of Oxygen on Pt segregation
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In vacuum –
Pd and Pd3Co cores increase Pt stability (positive potential 
shift) whereas Co, and Pd3Fe cores decrease stability

CV1

CV2

IMPACT OF CORE/SHELL ON Pt DISSOLUTION
Potential shift with monolayer Pt shell in vacuum
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In the presence of oxygen –
Pt becomes less stable compared with in vacuum
Pd and Pd3Co cores can increase Pt stability

0.25 monolayer 
of oxygen

IMPACT OF CORE/SHELL ON PT DISSOLUTION
Potential shift with monolayer Pt shell with oxygen
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• Oxide observed in the as-received state
• Reduction using hydrogen leads to 
further increase in mass activity
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CORE/SHELL IMPACT ON ACTIVITY
Ir/Pt Core/Shell – As received and H2 annealed
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• Pd3Co core gives the highest activity  
among all the Pd-Co alloys – 7x

• Chemistry for 20g scale-up underway
• Mass activity normalized by 5 y average  
spot price ratio of PGM metals equals 
0.70 mA/μgPGM and 0.38 mA/μgPGM for  
RDE and 300mg methods, respectively.
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CORE/SHELL IMPACT ON ACTIVITY
Pd3Co/Pt Core/Shell
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• Pd3Co/Pt core/shell cyclic resistance -
no apparent activity loss after 3000 cycles

0.7_1.05V, 10 sec, RT

CORE/SHELL IMPACT ON ACTIVITY
Pd3Co/Pt Core/Shell
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40% Pt2IrFe
ICP: 38.3% wt. Pt, 17.1%Ir, 7.0%Fe
ECA: ~46 m2/g Pt
Mass Activity: ~0.24 A/mg Pt
Specific Activity: ~649 μA/cm2

40% Pt2IrCr
ICP: 39.2%Pt, 17.8%Ir, 4.4%Cr
ECA: ~63 m2/g Pt
Mass Activity: ~0.17 A/mg Pt
Specific Activity: ~281 μA/cm2

40% Pt2IrCo = Baseline
ICP: %Pt; %Ir; %Co
ECA: ~44m2/gPt
Mass Activity: ~0.20 A/mgPt
Specific Activity: ~544 μA/cm2
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HIGHLY DISPERSED ALLOY CATALYST
Alternative Ir containing alloys
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• Modeling
– Impact of oxygen on Pt dissolution and structural stability for various 

core/shell systems has been quantified
• Core/Shell(Pt) Catalyst

– A number of elemental and alloy cores have been evaluated; Pd3Co and Ir 
cores lead to the highest improvement in ORR

• Alloy Catalyst
– Various PtIrX alloys have been synthesized and tested to understand 

activity and durability trade-off
• Future Work (2008)

– Pd3Co/Pt, Ir/Pt core/shell durability and scale-up optimization
– IrxCoy alloy cores 
– Validate modeling results on core/shell stability and durability

• Future Work (2009)
– Down-select optimum catalyst from dispersed or core-shell catalyst
– Validate full scale single-cell fuel cell

SUMMARY AND FUTURE WORK
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