

Highly Dispersed Alloy Cathode Catalyst for Durability

Sathya Motupally

June 10, 2008

Project ID # FC5

This presentation does not contain any proprietary, confidential, or otherwise restricted information

DOE Hydrogen Program

<u>Timeline</u>

- Start May 1, 2007
- End April 30, 2010
- 33% Complete

<u>Budget</u>

- Total project funding
 - DOE share \$6.278M
 - Cost share \$2.860M
- DOE Funding received in FY07
 - \$200K
- DOE Funding for FY08
 - \$1,600K

Barriers

- A. Performance
 - Increase catalyst activity

B. Cost

- Reduce Pt metal loading
- C. Durability
 - Increase cyclic durability

Partners

- Johnson Matthey Fuel Cells
 Johnson Matthey Fuel Cells
 the power within
- Texas A&M University

Brookhaven National Laboratory

Brookhaven National Laboratory

Technical Contributors

UTC Power:

T.T. Aindow, Elise Izzo, Panadda Madden, Sathya Motupally, Tom Jarvi

Johnson Matthey Fuel Cells:

Sarah Ball, Sarah Hudson, Rachel O'Malley, Brian Theobald, Dave Thompsett, Graham Hards

Brookhaven National Lab:

Wei-Ping Zhou, Jia Wang, Radoslav Adzic

Texas A&M University:

Perla B. Balbuena, Gustavo Ramirez-Caballero, Yuguang Ma, Rafael Callejas-Tovar, Julibeth Martinez de la Hoz

A United Technologies Company This presentation does not contain any proprietary, confidential, or otherwise restricted information

DOE Hydrogen Program

Objective

DOE Hydrogen Program

Develop structurally and compositionally advanced cathode catalyst that will meet DOE 2010 targets for performance and durability

DOE 2010 and 2015 Technical Targets

Characteristics	DOE 2010 Target	DOE 2015 Target
Pt group metal (total content) [g/kW]	0.3	0.2
Pt group metal (total loading) [mg/cm ²]	0.3	0.2
Mass activity @ 900mV [A/mg]	0.44	0.44
Specific activity @ 900mV [µA/cm ²]	720	720
Cyclic durability @ <80°C / <u>></u> 80°C [h]	5000/2000	5000/5000
ECA Loss [%]	<40	<40
Cost [\$/kW]	5	3

Milestones

DOE Hydrogen Program

Month/Year	Milestone or Go/No-Go Decision
August 2008	Milestone: Bench scale dispersed alloy catalyst formulation
September 2008	Go/No-Go decision: Verification of down-selected dispersed alloy catalyst
October 2008	Milestone: Bench scale core/shell catalyst formulation
November 2008	Go/No-Go decision: Verification of down-selected core/shell catalyst

Approach

C Power

DOE Hydrogen Program

2010

Strategy

HIGHLY DISPERSED ALLOY CATALYST

A United Technologies Company This presentation does not contain any proprietary, confidential, or otherwise restricted information

DOE Hydrogen Program

Modeling – Segregation energies for Pt₃M alloy^{S Hydrogen Program}

Atomic radius, experimental surface energy (E_{surf}) of M and calculated segregation energy (E_{segr}) of Pt in Pt₃M(111)

м	Atomic radius (Á)	E_{Surf} (J/m ²)	E_{segr} (eV) in Pt ₃ M
Pt	1.39	2.475	
Ag	1.44	1.250	0.15
Co	1.25	2.550	-0.61
Cr	1.28	2.300	0.06
Cu	1.28	1.825	-0.17
Fe	1.26	2.475	-0.41
Ir	1.36	3.000	-0.54
Mn	1.27	1.600	0.12
Мо	1.39	3.000	-1.30
Ni	1.24	2.450	-0.38
Pd	1.37	2.050	-0.03
Re	1.37	3.600	-2.08
Rh	1.34	2.700	-0.35
Ru	1.34	3.050	-0.83
Ti	1.47	2.100	0.68
V	1.34	2.550	-0.31

Surface Segregation Model for Pt₃M Alloys

Y. Ma and P. Balbuena, Surface Sci. 602, 107-113, (2008)

CORE/SHELL STABILITY

Effects of Oxygen on Pt segregation

E _{seg} (eV)	Pt ₃ lr(111)	Pt ₃ Co(111)	Pt ₃ Fe(111)	Pt ₃ Ni(111)
Under 0.25 ML of O	-0.04	0.14	0.45	0.20
Without adsorption	-0.54	-0.61	-0.41	-0.38

 E_{seg} : surface segregation energy Positive E_{seg} : core/shell structure energetically unfavorable

- Segregation behavior changes in the presence of oxygen
- Most transition metals change from Pt surface segregation in the absence of oxygen to anti-segregation with oxygen

IMPACT OF CORE/SHELL ON Pt DISSOLUTION

Potential shift with monolayer Pt shell in vacuum DOE Hydrogen Program

Syste	em	$\mu_{Pt}(eV)$	$\Delta \mu ({\rm eV})$	$\Delta U(\mathbf{V})$
Pt		-6.98	0	0
Pt(shell)-F	d(core)	-7.38	-0.40	0.20
Pt(shell)-C	Co(core)	-5.90	1.08	-0.54
	CVT1	-7.39	-0.41	0.21
Pt(shell)- Pd ₃ Co (core)	CVT2	-7.38	-0.40	0.20
	CVT1	-5.96	1.02	-0.51
Pt(shell)- Pd ₃ Fe (core)	CVT2	-5.97	1.01	-0.51

CV1

CV2

In vacuum – Pd and Pd_3Co cores increase Pt stability (positive potential shift) whereas Co, and Pd_3Fe cores decrease stability

IMPACT OF CORE/SHELL ON PT DISSOLUTION

Potential shift with monolayer Pt shell with oxygen

	System		$\mu_{Pt}(eV)$	$\Delta \mu ({\rm eV})$	$\Delta U(\mathbf{V})$
	Pt (0 ML)		-6.98	-0.72	0.36
0.25 monolayer of oxygen	Pt (0.25ML)*		-6.26	0	0
	Pt(shell)-Pd(core)		-6.42	-0.16	0.08
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Pt(shell)-	CVT1	-6.46	-0.20	0.10
	Pd ₃ Co (core)	CVT2	-6.46	-0.20	0.10
	Pt(shell)-	CVT1	-4.88	1.38	-0.69
	Pd ₃ Fe (core)	CVT2	-6.49	-0.23	0.12

In the presence of oxygen – Pt becomes less stable compared with in vacuum Pd and Pd_3Co cores can increase Pt stability

A United Technologies Company This presentation does not contain any proprietary, confidential, or otherwise restricted information

DOE Hydrogen Program

CORE/SHELL IMPACT ON ACTIVITY Ir/Pt Core/Shell – As received and H2 annealed^{DE Hydrogen Program}

CORE/SHELL IMPACT ON ACTIVITY Pd₃Co/Pt Core/Shell

- Pd₃Co core gives the highest activity among all the Pd-Co alloys – 7x
- Chemistry for 20g scale-up underway
 Mass activity normalized by 5 y average spot price ratio of PGM metals equals 0.70 mA/µgPGM and 0.38 mA/µgPGM for RDE and 300mg methods, respectively.

IITC Power

0.75

0.2

-6

-8 -

0.0

time (s)

0.4

0.6

E/V vs. RHE

0.1 M HCIO

10 mV/s, 1600 rpm

1.0

0.8

Pd₃Co/Pt core/shell cyclic resistance no apparent activity loss after 3000 cycles

-100

-200

0.0

Pt_M on Pd₂Co/C_JM, 300 mg batch

0.6

E/V vs. RHE

0.8

initial

0.4

0.2

after 3k cycles

A United Technologies Company This presentation does not contain any proprietary, confidential, or otherwise restricted information

0.1 M HCIO

1.2

20 mV/s

1.0

SA (uA/10cm2) 70 Specific Activity: ~649 µA/cm² 60

40% Pt2IrCr

ICP: 39.2%Pt, 17.8%Ir, 4.4%Cr ECA: ~63 m²/g Pt Mass Activity: ~0.17 A/mg Pt Specific Activity: ~281 µA/cm²

40% Pt2IrCo = Baseline

ICP: %Pt; %Ir; %Co ECA: ~44m²/gPt Mass Activity: ~0.20 A/mgPt Specific Activity: ~544 µA/cm²

A United Technologies Company This presentation does not contain any proprietary, confidential, or otherwise restricted information

Pt2lrCr

HIGHLY DISPERSED ALLOY CATALYST DOE Hydrogen Program Alternative Ir containing alloys

100

90

80

50

40

30

20

10

Pt2IrFe

ECA (m2/gPt)

Pt2lrCo

MA (mA/10mgPt)

40% Pt2IrFe

ICP: 38.3% wt. Pt, 17.1%lr, 7.0%Fe ECA: ~46 m²/g Pt Mass Activity: ~0.24 A/mg Pt

SUMMARY AND FUTURE WORK

- Modeling
 - Impact of oxygen on Pt dissolution and structural stability for various core/shell systems has been quantified
- Core/Shell(Pt) Catalyst
 - A number of elemental and alloy cores have been evaluated; Pd₃Co and Ir cores lead to the highest improvement in ORR
- Alloy Catalyst
 - Various PtIrX alloys have been synthesized and tested to understand activity and durability trade-off
- Future Work (2008)
 - Pd₃Co/Pt, Ir/Pt core/shell durability and scale-up optimization
 - Ir_xCo_y alloy cores
 - Validate modeling results on core/shell stability and durability
- Future Work (2009)
 - Down-select optimum catalyst from dispersed or core-shell catalyst
 - Validate full scale single-cell fuel cell