

Characterization of PEMFC Membrane Durability

K. A. Mauritz School of Polymers and High Performance Materials University of Southern Mississippi Hattiesburg, MS 39402

> Project ID # FCP 11

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date 6/1/06
- Project end date 5/31/08
- Percent complete 100%

Budget

- Total project funding
 - DOE share \$495,000
 - Contractor share
- Funding received in FY07
 - \$495,000
- Funding for FY08/09
 - \$1,000,000

Barriers

- Barriers addressed
 - High chemical and mechanical degradation rate of Nafion[®]
 - Poor membrane dimensional stability against humidity change in fuel cells
 - High fuel crossover
 - Low proton conductivity

Partners

 Interactions / collaborations
Illinois Institute of Technology
Project lead: Dr. Vijay Ramani,
Dept. Chemical Engineering (unfunded)

Objectives

- 1. Evaluate chemical degradation via dielectric spectroscopy
- 2. Generate metal oxide quasi-network particles using *in situ* sol-gel processes for inorganic alkoxide monomers in Nafion[®] membranes.
- 3. Characterize structure/properties/FC performance of (2).
- Enhance Nafion[®] chemical and mechanical durability via optimization of Nafion[®]/[metal oxide] nanocomposite membrane composition.

Milestones

Tack	Project Milestones	Task Co		
Number		Original Planned	Percent Complete	Progress Notes
1	Acquisition of Equipment	10/31/06	100%	Complete
2	Development of Characterization Methods	2/28/07	100%	Complete
3	Inorganic Modification of Membranes	6/30/07	100%	Complete
4	Membrane Durability Studies	10/31/07	100%	Complete

- Sol-gel processes to generate metal oxide nanoparticles in Nafion® sulfonic acid clusters causing mechanical reinforcement.
- Improve membrane modulus and dimensional stability under swell - de-swell.
- Reduce fuel crossover and minimize chemical degradation.
- Dielectric analysis of chemically degraded Nafion membranes

Domain targeted sol-gel reactions

Early region of stress-strain curves at 80° C, 100% RH

Titania reinforcement reduces swelling and improves membrane modulus and dimensional stability

	Modulus (MPa)	Length increase due to humidity change (%)	Strain at break (mm/mm)	Stress at break (MPa)
Nafion [®] /Titania	120.4 <u>+</u> 7.1	5.7 <u>+</u> 1.0	3.1 <u>+</u> 0.2	24.1 <u>+</u> 1.68
Nafion [®]	36.2 <u>+</u> 7.2	10.0 <u>+</u> 3.2	4.1 <u>+</u> 0.4	20.8 <u>+</u> 3.2

Contractile Stress response to Humidity Drop from 100% to 0% at 80° C

Reinforcement prevents membrane mechanical failure

Unfilled and filled Nafion[®] after drying-contractile stress vs. time test

--- regions of damage by SEM 100.0µm **Nafion® Titania/Nafion®** WD Mag I V Spot Det Pressure 100.0um WD Mag HV Spot Det Pressure .0 mm 339x 16.) kV 4.5 ETC

Arrow indicates direction of contractile stress exerted by sample during drying

Equivalent weight, water uptake, proton conductivity

	Nafion®/titania	Nafion®
Water uptake (%)	13.6 <u>+</u> 2.1	22.3 <u>+</u> 2.0
Equivalent weight (g/mole)	1143 <u>+</u> 20	1152 <u>+</u> 37

Acid functionality remains intact - reaction with, interference by titania quasi-networks.

- Water uptake reduced as volume inside clusters is occupied by inorganic network.
- Conductivity reduced due to restricted polymer chain mobility or/and increased tortuosity of proton conduction pathways.

Accelerated OCV test at 100° C, 25% RH

Rate of voltage loss lower for Nafion[®]/titania relative to unmodified Nafion[®] membrane

Fluoride emission rates

Nafion[®]/titania membrane has significantly lower chemical degradation - due to reduced fuel crossover

FC performance curves at 80° C, 75% RH before and after OCV

- Before OCV test, composite membrane has poor performance due to low water uptake and restricted polymer chain mobility.
- Nafion[®] membrane showed significant performance loss after OCV degradation test.
- Composite membrane performance is intact after OCV degradation test.
- Titania reinforcement minimized membrane degradation due to improved mechanical and gas barrier properties.

Hydrogen crossover current at ambient temperature before and after accelerated OCV test

- Hydrogen crossover current more for composite membrane before OCV test
- After OCV test, increase in crossover current for Nafion® is higher than that of composite membrane

Accelerated Chemical Degradation

75h film exposure to Fenton's reagent

SEM: 75h film exposure to Fenton's reagent soln. (post-degradation cut)

Dielectric loss factor vs. *f* for degraded and non-degraded Nafion[®] at 60 °C

- \Box f_{max} \downarrow with degradation
- □ Relaxation time $(\tau) = 1/(2\pi f_{max})$ decreases
- □ Chain conformation dynamics, T_g – related motions
- □ Slower motions with degradation
 - a. Shift to higher MW
 - b. Complexation around SO_3H
- □ d.c. conductivity at low f.

Powerful tool to probe macromolecular motions affecting proton transport

Future Work

- In-depth studies of relationship between dielectric spectra and Nafion® macromolecular fragmentation.
- Optimization of inorganic oxide quasi-network structure so durability can be achieved without sacrificing membrane performance.
- Composite membrane MEAs will be subjected to various current and humidity cycles to test mechanical durability.
- Oxygen and hydrogen permeability under different temperature and humidity conditions will studied.
- Composite membranes for direct methanol fuel cell applications will be tested.

Summary

- Dielectric spectroscopy is a powerful tool for probing macromolecular motions in Nafion[®] and molecular weight degradation.
- Nafion[®] membrane *in situ* grown titania nanoparticles improved barrier and mechanical properties and enhanced membrane durability by reducing physical and chemical degradation.
- Domain-targeted network incorporation pointed to a new route for prolonging the life of fuel cell membranes.