Center for Intelligent Fuel Cell Materials Design: Microstructural Design and Development of High Performance Polymer Electrolyte Membranes

Dr. Berry Decker, Chemsultants International Dr. Claire Hartmann-Thompson, Michigan Molecular Institute June 11, 2008

> Project ID # FCP-12

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: 6/1/06
- Project end: 5/28/08
- Percent complete: 95%

Barriers

- O Stack Material Cost
- P Durability
- R Thermal / Water mgmt.

Budget

- Total project funding
 - DOE \$ 1,485,000
 - Contractor \$ 624,144
- Funding received in FY07
 - \$798,310
- Funding for FY08
 - \$107,360

Partners

- Chemsultants International
- Michigan Molecular Institute
- Case Western Reserve
 University

Objectives

- Develop novel polymer / nanoparticle multiple-layer membrane with
 - improved mechanical stability
 - improved conductivity
 - \geq 120°C / \leq 50% RH operational capability
- Identify a solution casting methodology suitable for roll-to-roll, multiple-layer membrane fabrication

Requirements

High proton / Low electron conductivity Low permeability to fuel Low electro-osmotic drag coefficient Good chemical stability Ease of membrane fabrication

Objectives - Technical Approach

Milestones

Year	Milestone
2007	 Development of a procedure for the synthesis and characterization of Sulfonated Radel R-5000 with a target balance of physical, chemical and electrical properties.
	 Development of a procedure for the synthesis of an multi- sulfonated, Octa-Phenyl POSS nanoparticle
2008	 Development of a multilayer Proton Exchange Membrane with a balance of physical, chemical and electrical properties that combines the best fuel cell attributes of sulfonated Radel R-5000 and Sulfonated POSS
	 Development of a composite membrane with the optimal Sulfonated POSS loading and dispersion for high T / low RH conditions
	 Development of a solution casting application to produce thin, multilayer proton exchange membranes in a roll to roll form.

Approach

Systematic design - from theory to experiments

- σ : Conductivity
- F: Faraday constant
- Z_i: charge
- μ : mobility
- **C**_i: proton density
- **D**_i: diffusion coefficient

C_i = f (proton density, acidity) Parameter 1 Parameter 2 D_i = f (local friction, tortuosity) Parameter 3 Parameter 4

Parameter control for experiments

1. Proton density:

SPOSS has an IEC of 3.5 mmol/g , higher than Nafion at 0.92 mmol/g

2. Acidity:

Proton acidity from SPOSS is slightly lower than proton acidity from Nafion, but the synthesis is simplified.

3. Local friction:

Water may form tight bonding to –SO₃H from SPOSS or SRadel at lower RH.

4. Proton transfer path (Tortuosity)
 Polymer matrix and nanoparticles need to be compatible.
 A suitable casting solution solvent helps the particles disperse well inside the polymer matrix.

Material concept

Materials selection

Material characterization

POSS nanoparticles successfully sulfonated.

Material characterization

Radel R-5000 polymer successfully sulfonated.

Accomplishments Optimal SPOSS loading

SPOSS loading (%)	Conductivity (mS/cm ⁻¹)	
	Room temperature, immersed in water	
0	53	
10	60	
20	(71)	
30	56	
40	50	

20% SPOSS is the optimum loading for maximum in-plane conductivity

Accomplishments Nanoscale particle dispersion

TEM image of a closeup of a cross section of 20% SPOSS / 80% sulfonated Radel R-5000 film cast from DMSO solvent, scale bar 1 micron, domain size in the 100 to 500 nm range.

Nanometer scale SPOSS was successfully dispersed inside the polymer matrix

Accomplishments Improved conductivity at 25%RH and 90°C

Membrane with 20% SPOSS has improved conductivity vs. Nafion at 25%RH, 90°C.

Water uptake at 25%RH and 90°C

	Water uptake (%)
Nafion 112	3.0
SRadel	4.4
20% SPOSS +	6.3
80% SRadel	

Composite membrane provides better water uptake and leads to better conductivity. ASTM D1042 testing indicates membrane swelling is reduced by adding SPOSS particles 15

Increasing mechanical strength by using a multiple layer structure

The 1st and 3rd unfilled polymer layers provide flexibility and mechanical strength.

Accomplishments Increasing mechanical strength by using a multiple layer structure

Membrane	Storage Modulus at 30°C (MPa)	Storage Modulus at 120°C (MPa)	Storage Modulus at 170°C (MPa)
Nafion 117	600	Low	Low
Single-layer Sulfonated Radel (SRadel)	1954	1750	884
Single-layer (20% SPOSS + 80% SRadel)	1426	1120	23
3-layer SRadel / (20% SPOSS + 80% SRadel / SRadel	1348	1320	1202

3 layer membrane maintains a high storage modulus at 170°C.

Conductivity improvement at 25%RH and 90°C

Multiple-layer structure improves proton conductivity at 25% RH and 90°C.

Accomplishments Benefit of Multiple layer membrane

Voids may exist inside the single-layer membrane, especially near the particles.

When the 3rd layer is coated on the "semi-wet" 2nd layer, the polymer solution settles down to the 2nd layer and fills the voids.

Multiple-layer structure increases mechanical strength and fills potential voids formed in composite layer

Accomplishments Fuel cell testing at 50%RH, 80°C

Multiple-layer composite membrane has similar performance to Nafion at 50%RH and 80°C.

Accomplishments Solution casting multiple-layer membranes

Knife over roll process

3-layer membrane

5-layer membrane

Future Work

- Optimize the caliper (thickness) of individual membrane layers and of the total multiple-layer membrane
- Expand membrane pilot casting trials for optimum multiple-layer formation development
- Complete additional fuel cell testing of multiplelayer membranes at 25% RH and 120°C.

Future work – optimize layer & membrane thickness

Caliper "x" needs to be thin enough to prevent membrane drying, but conversely it must also be thick enough to provide sufficient mechanical strength.

Summary

- A method to prepare high proton conducting SPOSS particles was developed. The ion exchange capacity achieves 3.5 mmol/g.
- Membranes produced with 20% sulfonated POSS particles and 80% sulfonated Radel R-5000 polymer have conductivity close to 10⁻² Sc m⁻¹ at 25% RH and 90°C.
- Pilot scale casting carried out using a commercial scale process produces uniform and pin-hole free multiple-layer membrane structures.