

Dimensionally Stable High Performance Membrane

Han Liu, Min Chen, Jason Willey and Pamela Maxwell Giner Electrochemical Systems, LLC

FCP-013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Budget

- □ Total Project Funding: \$750 K
- Funding Received: \$375 K in FY08

Objectives

- Develop Membrane-Electrode Assemblies (MEAs) based on dimensionally stable membrane (DSMTM) with high freeze/thaw durability
- Enhance MEA RH cycling durability
- Develop/improve fabrication technology for support structure
- Develop/evaluate localized reinforcement strategy
- Evaluate the effect of MEA configuration

Approach

Task 1: F/T Protocol Development

Longer, Wider RangeIn-situ Monitoring

Task 2: Enhanced Patterning

- Micromolding
- Micromachining
- Material Screening

Task 3: Selective Reinforcement

- Identify Weak Area
- Develop Reinforcement Strategy

Task 4: MEA Configuration

- Channel Width
- Compression
- Catalyst Layer Configuration

Task 5: Stack Test

Technical Accomplishments/ Progress/Results

- Successfully developed new membrane support fabrication process that can be readily scaled up for continuous low cost mass production of DSMTM.
- □ The DSMTM show 10X better in-plane swelling stability and more than one order of magnitude less creep rate than Nafion[®] 112.
- □ Localized mitigation for the DSMTM completely eliminates edge failures.

Freeze/Thaw Cycling (Nafion 112)

Resistance @ -40°C increases with number of cycling while impedance @ 80°C remains constant. Capacitance decreases with time.

Giner Electrochemical Systems, LLC

Freeze/Thaw Cycling (Nafion 112)

Reactant Gas: H₂ and air, Pressure: balanced, Temperature: 80°C cell, 64°C (50% RH) air, 80°C (100% RH), Gas Stoic: 2*, Mode: Constant current (* Under OCV conditions, the gases supplied at 200 mA/cm² equivalent flow.)

The resistance increase at low temperature does not lead to any detectable performance loss after the F/T cyclings.

Freeze/Thaw Cycling (Nafion 112)

Results from the new temperature stepping protocol indicate that the measured resistance is not an artifact of delayed heat transfer.

Giner Electrochemical Systems, LLC

Freeze/Thaw Cycling (Nafion 112)

More detailed impedance data can be obtained from the new temperature stepping protocol.

Freeze/Thaw Cycling (Nafion 112)

Material	% elongation at break	
	Before Cycling	After 385 F/T Cycles (Dry)
Membrane (machine direction)	1290	40
Membrane (cross direction)	320	25
MEA (machine direction)	960	52
MEA (cross direction)	510	37
	Before Cycling	After 200 F/T Cycles (Wet)
Membrane (machine direction)	> 300	> 300
Membrane (cross direction)	> 300	> 300

Previous data from GES show N112 becomes brittle after F/T cycling under dry conditions. There is no detectable difference after similar experiments under wet conditions.

Low Cost Fabrication of DSMTM Support

Various technologies have been used to develop micromolds for DSM[™] support fabrication.

Low Cost Fabrication of DSMTM Support

New micromolds can replicate the dimensions of the laser drilled support structure.

GES

Giner Electrochemical Systems, LLC

Low Cost Fabrication of DSM[™] Support

Support structure with difference thicknesses can be readily prepared.

Low Cost Fabrication of DSM[™] Support

The support structure can be prepared with controlled surface/bulk porosity, which can further enhance ionomer adhesion, although adhesion has never been an observed problem for DSM[™] based on laser drilled support.

Low Cost Fabrication of DSM[™] Support

Since the support structure can be prepared with controlled porosity, an ionomer interpenetrating zone can be formed, which enhances conductivity without sacrificing mechanical properties.

Low Cost Fabrication of DSMTM Support

Schematic illustration of full DSM[™] MEA fabrication line. Direct catalyst inking, instead of decal transfer, can be used due to high mechanical stability of DSM[™].

Low Cost Fabrication of DSM[™] Support

A section of prototype DSM[™] fabrication belt for continuous manufacturing of DSM[™] support.

Giner Electrochemical Systems, LLC

Low Cost Fabrication of DSM[™] Support

The DSM with micromolded support structure shows similar dimensionally stability compared to laser drilled samples.

RH Cycling Experimental

- Based on accelerated RH cycling protocol developed by GM.
- All tests were conducted at 95°C, ~ 5 cycles per hour.
- \Box All cells were tested to failure (0.8A/cm², <0.1V).

Effect of Localized Reinforcement on RH Cycling Durability

DSM[™] with edge protection enhances the durability to > 3X compared N112 membranes.

Effect of Localized Reinforcement

DSM[™] with edge protection completely eliminate edge failures.

Future Work

- Demonstrate the feasibility of continuous fabrication.
- Investigate alternative polymer support materials.
- Study the effect of interpenetrating zone and porosity of the support structure.
- Evaluate the effect of MEA structure on freeze/thaw durability.

- ❑ New fabrication method offers unique DSMTM support with controlled porosity, pattern configuration and feasibility for continuous MEA manufacturing.
- □ DSMTM show 10X better in-plane swelling stability and more than one order of magnitude less creep rate compared to Nafion.
- □ Edge protected DSMTM completely eliminates edge failures and enhances the durability to > 3X better than the N112 membranes.