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Project Overview

Timeline
Project Start Date - 9/30/2003
Project End Date - 9/30/2008
Percent Complete - 90%

Technical Barriers and Targets
Electrode performance

Perform at least as well as the 
conventional Pt catalysts currently in 
use in MEAs

Durability
2,000 hours operation with less than 
10% power degradation

Material Cost
Cost at least 50% less as compared to 
a target of 0.2 g of Pt / peak kW

Partners / Collaborations
Case Western Reserve University

- Molecular Modeling
Northeastern University

- Structural Studies
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OVERALL:

To develop non-precious catalysts for PEMFC with high catalytic activity, selectivity
and durability which perform as well as conventional Pt catalysts with a cost at least 
50% less than a target of 0.2 g (Pt loading) / peak kW

Project Objective

Transition metal-chelate
catalysts

• Catalyst screening
- Mo-Ru-Se/C, Ru-N/C, 

Ru-Fe-N/C, Co-N/C, Fe-N/C, 
Cr-N/C, Cu-N/C, Ni-N/C 

• Specific focus
- Ru-N/C, Ru-Fe-N/C, Co-N/C

Carbon-based 
metal-free catalysts

Carbon composite
catalysts

• Surface modification of 
porous carbon with:
(i)  oxygen functional group
(ii) nitrogen functional group
(iii) non-metallic additive “X”

• Use of metal-free catalysts 
as a catalyst support

• “Metal-catalyzed pyrolysis”
to increase the number of 
active sites

• Chemical post-treatment
• Fuel Cell and stability 

testing according to DOE 
test protocol

SPECIFIC FOCUS:
2003 - 2004 2005 2006 - 2008
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Technical Accomplishments

Highly active carbon-based metal-free catalysts were developed.
Carbon activation methodology was developed to synthesize metal-free catalyst
with surface functional groups.
Onset potential as high as 0.82 V vs. SHE was obtained.
No H2O2 generation (FOUR electron pathway for ORR).

Highly active carbon composite catalysts were developed.
Metal-free catalyst was used as a catalyst support to increase the activity and 
selectivity.

Metal-catalyzed pyrolysis process was developed to increase the concentration 
of active sites and the stability.

The post-heat-treatment and chemical treatment were optimized.

FOUR electron pathway for ORR.

10% performance degradation in fuel cell after 480 h of continuous operation.

Accelerated corrosion test for Pt catalysts on different supports
15% loss in catalyst activity was observed after 50 h testing.
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Specific Focus on Carbon-Based Catalysts (FY 2005 - 2008)

OVERALL OBJECTIVE: To develop highly active carbon-based catalyst with:

• active reactions sites with strong Lewis basicity (π electron delocalization) 
to facilitate reductive O2 adsorption

• nano-structured graphitic carbon with high stability

Carbon-based metal-free 
catalyst (MFC)

Carbon composite catalyst

Optimization of active reaction 
sites

as a function of:
(1) surface oxygen groups 
(2) nitrogen content and 

precursor
(3) carbon support
(4) porosity and pore size 

distribution
(5) pyrolysis temperature

(6) non-metallic additive “X”

The following steps were 
performed to 

develop carbon composite 
catalyst:

(1) Use of metal-free catalyst as 
a catalyst support

(2) Metal-catalyzed pyrolysis to 
increase the number of active 
sites 

(3) Chemical post-treatment

The following catalysts 
were tested 

(1) Pt/CC1
(2) Pt/CC2

Durability test



6
Center for Electrochemical EngineeringUniversity of South Carolina

Carbon-Based Metal-Free Catalysts

(a) as-received carbon;  (b) Treatment with HNO3;
(c) Treatment with NH3;  (d) USC Methodology - 1;
(e) USC Methodology - 2

• HIGHLIGHT: The USC methodology increases the onset potential for oxygen reduction by ca. 500 mV, 
as compared with the as-received carbon.

• The USC-developed “MFC-4” catalyzes oxygen reduction to water via four-electron transfer with no 
H2O2  production (above 0.2 V vs. NHE).
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Carbon-Based Metal-Free Catalysts

• Anode: 2 mg cm-2 of ETEK 20% Pt/C   
• Membrane: NafionTM 112  • Operating temperature: 77 oC (H2); 75 oC (O2); 75 oC (cell)

Cross-section of MEA with the metal-
free C-X cathode catalyst.

6 mg cm-2 catalyst loading – H2(30 psi) / O2(40 psi)
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Carbon-Based Metal-Free Catalysts

• HIGHLIGHT: TEM & XRD: No metallic elements 
in the synthesized catalysts.

• XPS: High-temperature pyrolysis leads to the 
formation of pyrrole- and pyridine–type 
nitrogen.

TEM

MFC-3

XRD

XPS

MFC-3
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Carbon Composite Catalysts
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• HIGHLIGHT: Co-Fe-N complex showed improved activity when 
compared to Co-N and Fe-N catalysts.

• Co1Fe1Nx showed maximum fuel cell performance at 6 mgcm-2

catalyst loading.
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Carbon Composite Catalysts

• Anode: 2 mg cm-2 of E-TEK 20% Pt/C  (0.4 mg cm-2 Pt)
• Cathode: 4 or 6 mg cm-2 of carbon composite catalyst 
• Membrane: NafionTM 112
• Operating temperature: 77 oC (H2); 75 oC (O2); 75 oC (cell)
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Metal-Free and Carbon Composite Catalysts – A 
Comparison
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•HIGHLIGHT: Metal-nitrogen complexes are responsible for the activity.
• Chemical leaching increases the activity.
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Carbon Composite Catalysts
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• HIGHLIGHT: Metal-N complex is not responsible for ORR activity
• Un-pyrolyzed catalyst shows only Co-N peak
• Co-Co peak intensity increases with increase in pyrolysis temperature
• CoNxcomplex decomposes above 800 oc
• Co-Co peak is Predominantly observed above 800 oC
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Carbon Composite Catalysts

Surface concentration determined by XPS

C O N Co Fe

94.86        1.26         3.88             - -

• HIGHLIGHT: Metal atoms are covered with several graphitic layers.
• Nanostructured fiber of graphitic carbon was formed as a result of metal-catalyzed pyrolysis.
• No metal traces were detected on the surface of carbon composite catalyst.

Metal atom

Nano-fiber



14
Center for Electrochemical EngineeringUniversity of South Carolina

Carbon Composite Catalysts

before pyrolysis after pyrolysis post-treatment

Potential Current density (A cm-2)

0.7 V 0 0.03  with ~15% H2O2 0.05 with ~1.5% H2O2

0.4 V 0.3 with ~ 37% H2O2 0.7 with  ~ 10% H2O2 0.9 with ~1.5% H2O2

• HIGHLIGHT: High-temperature pyrolysis increases the Lewis basicity due to the increased 
concentration of pyridine–type nitrogen, and incorporates the nitrogen into graphitic 
structures which increases the stability.

• Post-treatment increases the concentration of pyridinic-type nitrogen while removing 
pyrrolic-type nitrogen.
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Carbon Composite Catalysts
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• HIGHLIGHT: Transition metal increases the N2 content
• Fe and Co contents decreased after leaching
• Chemical leaching removes surface metal particles 

only
•Metal particles are encased within the carbon structure
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Carbon Composite Catalysts – Durability Study

• HIGHLIGHT: No significant 
degradation of the catalyst 
is observed.

• Water management should 
be optimized.
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Carbon Composite Catalysts – Durability Study
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•HIGHLIGHT: Approximately 10% performance 

decrease over 480 h.
• Catalytically active nitrogen functional groups 

remain stable during long-term operation.
• Thick catalyst layer causes water management 

problem during operation.
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Accelerated Corrosion Test of Different Supports
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• Fuel cell start-up, 
• Measure polarization curve under H2/air (Relative 

humidity, RH = 50 %),
• apply 1.2 V at 80 oC under H2/N2 (RH = 100 %) for 

15 hrs, 
• Measure polarization curve under H2/air (RH = 50 %), 
• Apply 1.2 V at 80 oC under H2/N2 (RH = 100 %) for 5 

hrs or more and
• Repeat procedure of (iv) and (v).

Pt/CC1 GM catalyst

%Eloss @ 0.5A cm-2 %Eloss @ 1.0A cm-2 %Eloss @ 0.5A cm-2 %Eloss @ 1.0A cm-2

15 h 0 6.3 0.9 2.7

20 h 3.5 6.7 1.1 3.1

25 h 3.9 12.8 2.7 7.1

30 h 4.9 14.7 6.7 11.5

50 h 14.8 40.8 36 N/A

Corrosion 
time
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•HIGHLIGHT: Pt/Carbon composite 2 (Pt/CC2) performs better than GM 
catalyst

• Pt/CC2 shows lower degradation than Pt/CC1 and GM catalyst
•Multilayer structure of Pt/CC2 modifies the carbon surface and lowers 
carbon corrosion
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Accelerated Corrosion Test of Different Supports
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•HIGHLIGHT: Slower decrease in catalytic activity (7.6 – 14.8%) than GM 
catalyst (36%) at 0.5 Acm-1 when polarized at 1.25 V.
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Future Work

– To further improve the durability of carbon composite catalysts by 
controlling hydrophobicity of catalyst layer and by increasing the activity 
and by reducing the catalyst layer thickness. 

– To eliminate the water flooding of USC developed non-platinum catalyst.
– To increase the fuel cell durability by optimizing the MEA preparation 

conditions – including (i) Nafion loading on the catalyst layer, (ii) 
calendaring process of the catalyst layer, (iii) hot-pressing load, etc.

– To develop low Pt loading cathode by using carbon composite catalysts as 
novel supporting materials.
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Summary

Objective: Develop carbon-based metal-free catalysts and carbon composite 
catalysts for PEMFC which perform as well as conventional Pt catalysts.

Approach: Optimize the active reaction sites to increase the catalytic activity 
and stability using USC-developed methodology.

Technological Accomplishments and Progress: Demonstrated high catalytic 
activity (0.82 – 0.85 V vs. SHE), selectivity (0 – 1 % H2O2) and stability (for   
80 h) for carbon-based catalysts.

Collaborations: Active partnership with Case Western Reserve University and 
Northeastern University. Northeastern University was unable to prepare 
stable Co chalcogenide catalysts.

Proposed future research: Optimize MEA performance and stability with the 
carbon composite catalysts by improving water management and low Pt 
loading catalyst using carbon composite as support.
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