

Novel Non-Precious Metals for PEMFC: Catalyst Selection through Molecular Modeling and Durability Studies

<u>Branko N. Popov</u>, Vijayadurga Nallathambi, Gang Wu, Xuguang Li, Sehkyu Park, Lingyun Liu, Swami Kumaraguru, Hector Colon-Mercardo, Nalini Subramanian, Jong-Won Lee

University of South Carolina June 13, 2008

Project ID: FCP15

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project Start Date 9/30/2003
- Project End Date 9/30/2008
- Percent Complete 90%

Technical Barriers and Targets

Electrode performance

Perform at least as well as the conventional Pt catalysts currently in use in MEAs

Durability

2,000 hours operation with less than 10% power degradation

Material Cost

Cost at least 50% less as compared to a target of 0.2 g of Pt / peak kW

Partners / Collaborations

- Case Western Reserve University
 - Molecular Modeling
- Northeastern University
 - Structural Studies

Project Objective

OVERALL:

To develop <u>non-precious catalysts</u> for PEMFC with high <u>catalytic activity</u>, <u>selectivity</u> and <u>durability</u> which perform as well as conventional Pt catalysts with a cost at least 50% less than a target of 0.2 g (Pt loading) / peak kW

Technical Accomplishments

Highly active carbon-based metal-free catalysts were developed.

- Carbon activation methodology was developed to synthesize metal-free catalyst with surface functional groups.
- Onset potential as high as 0.82 V vs. SHE was obtained.
- □ No H_2O_2 generation (FOUR electron pathway for ORR).
- Highly active carbon composite catalysts were developed.
 - Metal-free catalyst was used as a catalyst support to increase the activity and selectivity.
 - Metal-catalyzed pyrolysis process was developed to increase the concentration of active sites and the stability.
 - □ The post-heat-treatment and chemical treatment were optimized.
 - □ <u>FOUR</u> electron pathway for ORR.
 - □ 10% performance degradation in fuel cell after 480 h of continuous operation.
- Accelerated corrosion test for Pt catalysts on different supports
 - 15% loss in catalyst activity was observed after 50 h testing.

Specific Focus on Carbon-Based Catalysts (FY 2005 - 2008)

OVERALL OBJECTIVE: To develop highly active carbon-based catalyst with:

• <u>active reactions sites with strong Lewis basicity</u> (π electron delocalization)

to facilitate reductive O₂ adsorption

• nano-structured graphitic carbon with high stability

Carbon-based metal-free catalyst (MFC)	Carbon composite catalyst	Durability test
Optimization of active reaction sites as a function of: (1) surface oxygen groups (2) nitrogen content and precursor (3) carbon support (4) porosity and pore size distribution (5) pyrolysis temperature (6) non-metallic additive "X"	 The following steps were performed to develop carbon composite catalyst: (1) Use of metal-free catalyst as a catalyst support (2) Metal-catalyzed pyrolysis to increase the number of active sites (3) Chemical post-treatment 	The following catalysts were tested (1) Pt/CC1 (2) Pt/CC2

Carbon-Based Metal-Free Catalysts

- HIGHLIGHT: The USC methodology increases the onset potential for oxygen reduction by ca. 500 mV, as compared with the as-received carbon.
- The USC-developed "MFC-4" catalyzes oxygen reduction to water via four-electron transfer with <u>no</u> <u>H₂O₂ production (above 0.2 V vs. NHE)</u>.

Carbon-Based Metal-Free Catalysts

Cross-section of MEA with the metalfree C-X cathode catalyst.

Anode: 2 mg cm⁻² of ETEK 20% Pt/C

• Membrane: Nafion[™] 112 • Operating temperature: 77 °C (H₂); 75 °C (O₂); 75 °C (cell)

Carbon-Based Metal-Free Catalysts

- **HIGHLIGHT**: <u>Co-Fe-N complex</u> showed improved activity when compared to <u>Co-N</u> and <u>Fe-N</u> catalysts.
- <u>Co₁Fe₁N_x</u> showed maximum fuel cell performance at 6 mgcm⁻² catalyst loading.

9

- Anode: 2 mg cm⁻² of E-TEK 20% Pt/C (0.4 mg cm⁻² Pt)
- Cathode: 4 or 6 mg cm⁻² of carbon composite catalyst
- Membrane: Nafion[™] 112
- Operating temperature: 77 °C (H₂); 75 °C (O₂); 75 °C (cell)

Metal-Free and Carbon Composite Catalysts – A Comparison

•HIGHLIGHT: Metal-nitrogen complexes are responsible for the activity.

Chemical leaching increases the activity.

- HIGHLIGHT: Metal-N complex is not responsible for ORR activity
- Un-pyrolyzed catalyst shows only Co-N peak
- Co-Co peak intensity increases with increase in pyrolysis temperature
- CoN_x complex decomposes above 800 °c
- Co-Co peak is Predominantly observed above 800 °C

- HIGHLIGHT: Metal atoms are covered with several graphitic layers.
- Nanostructured fiber of graphitic carbon was formed as a result of metal-catalyzed pyrolysis.
- No metal traces were detected on the surface of carbon composite catalyst.

- HIGHLIGHT: High-temperature pyrolysis increases the Lewis basicity due to the increased concentration of pyridine-type nitrogen, and incorporates the nitrogen into graphitic structures which increases the stability.
- Post-treatment increases the concentration of pyridinic-type nitrogen while removing pyrrolic-type nitrogen.

Analytical technique		Concentration (wt.%)	
		Со	Fe
ICP-MS	Before leaching After leaching	10.4 4.6	9.6 1.41
XPS	After leaching	0	0

HIGHLIG	GHT: Tra	insition	metal	increa	ses	the N ₂	content
					- C.		

- Fe and Co contents decreased after leaching
- Chemical leaching removes surface metal particles only

•Metal particles are encased within the carbon structure

Carbon Composite Catalysts – Durability Study

Cross-section of MEA with the carbon composite cathode catalyst (2 mg cm⁻²) before and after stability test for 80 h

Carbon Composite Catalysts – Durability Study

•HIGHLIGHT: Approximately 10% performance decrease over 480 h.

- Catalytically active nitrogen functional groups remain stable during long-term operation.
- Thick catalyst layer causes water management problem during operation.

Accelerated Corrosion Test of Different Supports

Corrosion	Pt/CC1		GM catalyst		
time	% <i>E</i> _{loss} @ 0.5A cm ⁻²	% <i>E</i> _{loss} @ 1.0A cm ⁻²	% <i>E</i> _{loss} @ 0.5A cm ⁻²	% <i>E</i> _{loss} @ 1.0A cm ⁻²	
15 h	0	6.3	0.9	2.7	
20 h	3.5	6.7	1.1	3.1	
25 h	3.9	12.8	2.7	7.1	
30 h	4.9	14.7	6.7	11.5	
50 h	14.8	40.8	36	N/A	

•HIGHLIGHT: Pt/Carbon composite 2 (Pt/CC2) performs better than GM catalyst

• Pt/CC2 shows lower degradation than Pt/CC1 and GM catalyst

•Multilayer structure of Pt/CC2 modifies the carbon surface and lowers carbon corrosion

Accelerated Corrosion Test of Different Supports

•HIGHLIGHT: Slower decrease in catalytic activity (7.6 – 14.8%) than GM catalyst (36%) at 0.5 Acm⁻¹ when polarized at 1.25 V.

Future Work

- To further improve the durability of carbon composite catalysts by controlling hydrophobicity of catalyst layer and by increasing the activity and by reducing the catalyst layer thickness.
- To eliminate the water flooding of USC developed non-platinum catalyst.
- To increase the fuel cell durability by optimizing the MEA preparation conditions – including (i) Nafion loading on the catalyst layer, (ii) calendaring process of the catalyst layer, (iii) hot-pressing load, etc.
- To develop low Pt loading cathode by using carbon composite catalysts as novel supporting materials.

Summary

Objective: Develop carbon-based metal-free catalysts and carbon composite catalysts for PEMFC which perform as well as conventional Pt catalysts.

- Approach: Optimize the active reaction sites to increase the catalytic activity and stability using USC-developed methodology.
- □ Technological Accomplishments and Progress: Demonstrated high catalytic activity (0.82 0.85 V vs. SHE), selectivity (0 1 % H₂O₂) and stability (for 80 h) for carbon-based catalysts.
- Collaborations: Active partnership with Case Western Reserve University and Northeastern University. Northeastern University was unable to prepare stable Co chalcogenide catalysts.
- Proposed future research: Optimize MEA performance and stability with the carbon composite catalysts by improving water management and low Pt loading catalyst using carbon composite as support.

