



**National Center for** 

**Manufacturing Sciences** 



# Technologies for Mass Manufactured Manifolds and Seals for PEM Fuel Cells in Transportation Applications

Patty Cosentino Presented by: George Roberts UTC Power June 13, 2008

ID# MF5





This presentation does not contain any proprietary, confidential, or otherwise restricted information

# This work is supported by the Department of Energy (DoE) under Award Number DE-FC36-04GO14217, A001 to the National Center for Manufacturing Sciences (NCMS)

### Overview – Low Cost/High Volume Fuel Cell Seals

#### Timeline

Phase 1

- Start : May 2005
- Finish : August 2008
- 75% Complete

#### Budget

- \$1,184,222 Total Project
  - \$579,436 NCMS/DOE share
  - \$604,786- Contractor share
- Funding received in FY07
  - \$448,207 total funding
- Funding for FY08
  - \$736,015 total funding

#### **Barriers**

Phase 1 and Phase 2

- Long assembly time
- Lack of high speed manufacturing
- Assembly/life cycle cost
- Material Yield
- Material Contamination

#### Partners

- Freudenberg NOK
- Project Lead Jeff Ludwig UTC Power

### Overview – Low Cost/High Volume Manufacturing Technologies -

#### Timeline

- March 2006
- December 2007
- 80%

#### Barriers

- Barriers addressed
  - Material compatibility
  - Low volumes resulted in welded configuration

#### Budget

- Total Project Funding
  - \$235K NCMS/DOE share
  - \$262K UTC Power share
- Total funding received \$498K

#### Partners

- Lawrence Berkeley National Labs
- General Pattern
- Project Lead: Tom Donahue UTC Power

#### **Objectives – Low Cost/High Volume** Fuel Cell Seals

- PEM Fuel Cells require inter cell seals (interfacial seals) to separate reactants and coolant streams.
- Fuel Cells utilizing external manifolds require a high-speed system for sealing the manifold to the to the exterior of the stack.
- The current design for both these seals is expensive and has low yields.

The Objectives of this program are to:

- 1. Evaluate/select Material
- 2. Develop Manufacturing process
- 3. Assemble a short-stack using the new seals
- 4. Assemble the seal into a full-size unit for in-house or field testing.

### **Objectives - Low Cost/High Volume** Manufacturing Technologies

- Due to initial low volumes of the PureMotion® 120 powerplant, connecting manifolds were fabricated utilizing low volume/high cost manufacturing methods
- The Objectives of this program were to :
  - Utilize low cost manufacturing methods to reduce cost of assemblies in PEM Fuel Cell System (PEMFCS)

Test for PEMFCS material compatibility

# **Milestones and Decision Gates**

| Month/Year                                                                 | Milestone or Go/No-Go Decision                                                                                          |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Sept-06 <i>Phase 1</i><br>Mar-07 <i>manifolds</i><br>Jan 08 <i>Phase 2</i> | Go/No-Go Decision: Material Property Selection                                                                          |
| Feb-07 Phase 1                                                             | Milestone : Tool Design and Fabrication                                                                                 |
| Dec-07 Phase 1                                                             | Milestone: Short Stack Verification (2,000 hours)                                                                       |
| May -08 Phase 2                                                            | Assemble and test Short Stack to 2,000 Hours                                                                            |
| July-07 <i>manifolds</i><br>Aug-08 seals<br>Phase 1 and<br>Phase 2         | Milestone: Full Size Stack Validation<br>Assemble a full size power plant for runtime in the field or in house testing. |

# Approach

| Material<br>Selection                                                                   | Design / Process<br>Development                              | Full Size Testing                                          |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| <ul> <li>Determine basic<br/>material properties</li> <li>Test materials for</li> </ul> | •Seal Design – FEA,<br>seal geometry<br>•Material Processing | •Test on full-size power plant                             |
| compatibility                                                                           | Parameters  •Qualify Process Equipment                       | <ul> <li>Operate in real world<br/>conditions</li> </ul>   |
| •Perform fuel cell compatibility testing                                                | •Application Trials: sub-<br>scale and full size             | <ul> <li>Analyze durability and<br/>performance</li> </ul> |
| <ul> <li>Ex-Situ testing (Aging)</li> </ul>                                             | <ul> <li>Fabricate/procure parts</li> </ul>                  |                                                            |
| <ul> <li>In-Situ Testing (Short<br/>Stack)</li> </ul>                                   |                                                              |                                                            |
|                                                                                         |                                                              | 8                                                          |

- Reduce Scrap
  - Cold-Runner tool design eliminated the need to scrap runner material
  - 10x reduction in material scrap



**Reduced Elastomer Material** 

- Improve Process Capability
  - Implement better tools to achieve acceptable tolerances to a CPk and CP of 1.33 or better
  - Reduced Scrap
  - Reduced inspection from 100% to < 5%</p>
- Improve Material Selection
  - Use more robust proprietary material
  - Design seal configuration such that contamination is eliminated

- Material down select to two potential materials complete
- New materials have improved compatibility and durability.
- Option 1 UV cured material
- Option 2 Die cut gasket material
- Estimated process times reduced ~ 15x (22 hrs to less than 1.25hrs).



- Identified process and equipment for highly automatable application and curing.
- Reduced # of seal components from 4 to 2, with the design potential to further reduce to a single seal component.
- Successfully applied seal material to short stack for insitu testing.
- Commenced in-situ testing on short stack.
- Full size application trials to begin 6/08

### Technical Accomplishments/ Progress/Results Manifolds

- Qualified 4 new plastics for use in PEMFCS
- •Developed method to identify potential contamination sources within molded material
- •Fabricated components using new plastics
- >90% cost savings
- >70% weight savings











## **Future Work**

### • FY08

- Long term short stack testing
  - Seal durability
  - Performance impacts
- Full size stack validation that incorporates low-cost, high durability seal design.
- Implement integration of automated process into actual production.

# Summary

- Low cost/high volume manufacturing a key to success of PEM Fuel Cell technology
- Previous seal material and processing
  - High cost
  - Difficult processing
- New interfacial and manifold seal design
  - Meets stringent contamination requirements
  - High volume manufacturing
  - Reduction in cycle time and scrap material
- Implementation into fielded Stack assemblies

# Summary

- New manifold design/processing
  - Material compatibility
  - Low cost material
  - Low cost/high volume processing
- Implementation into fielded Stack assemblies