

Development of Solar Powered Thermochemical Production of Hydrogen from Water

Presented by Nathan Siegel for the Solar Thermochemical Hydrogen (STCH) Team

DOE Annual Merit Review Washington, DC June 10th, 2008 Project ID # PD13

This presentation does not contain any proprietary, confidential, or otherwise restricted information

GENERAL ATOMICS

STCH Project Overview

<u>Timeline</u>

Begin: 6-25-2003 End: 9-30-2009 Percent Complete: 75%

Team Members

General Atomics Argonne National Laboratory National Renewable Energy Laboratory University of Nevada, Las Vegas University of Colorado, Boulder TIAX, LLC ETH, Zurich Sandia National Laboratories

<u>Budget</u>

Total DOE Funds:\$13.1M Total Cost Share: \$2.2M FY07-08 DOE: \$2M FY07-08 Cost Share: \$300K

Barriers Addressed

U. High-Temperature Thermochemical Technology
V. High-Temperature Robust Materials
W. Concentrated Solar Energy Capital Cost
X. Coupling Concentrated Solar Energy and Thermochemical cycles

Project Objectives

Overall

• Select one or two cost competitive solar powered hydrogen production cycles for large scale demonstration

- •Develop solar receiver concepts
- •Perform experimental validations of the key components of prospective cycles
- •Produce economic models of all prospective cycles using a common methodology and assumptions

Metric	Unit	2008 Target	2012 Target	2017 Target
Solar Thermochemical Hydrogen Cost	\$/kg H ₂	10.00	6.00	3.00
Heliostat Capital Cost	\$/m²	180	140	80
Process Energy Efficiency	%	25	30	>35

Milestones and Technical Accomplishments

- Five prospective cycles (classes) remain in consideration
- Cadmium cycle hydrolysis step has been evaluated
- Cu-Cl conceptual process design is complete, hydrolysis step demonstrated
- Initial experimental evaluation of the solid particle receiver is complete
- Solar receiver/reactor concepts are being designed/demonstrated
- H2A economic analysis has begun for all cycles.
- Go/No Go: A final downselect to 1-2 cycles will be completed by Sept. 1, 2008; alternate cycles might be continued at lower levels of funding

Technical Approach

The STCH project is divided into five technical task areas

Task 1: Cycle Feasibility

- Ferrite (CU, SNL)
- Zinc Oxide (CU, ETH)
- Cadmium Oxide (GA, UNLV)
- Manganese Oxide (CU)
- Copper Chloride (ANL)

Task 2: Receiver Studies

- Solid Particle (SNL, UNLV)
- CR5 (SNL)
- Cavity/Aerosol (NREL, CU, ETH)
- Rotary Kiln (ETH)
- Beam Down (GA)

Task 3: Systems

- Ultra-High Temp (SNL, CU, ETH)
- High Temp (SNL, UNLV, ANL)

Task 4: H2A

 Integration of economic analyses (TIAX)

Task 5: Integration -Outreach

- IEA collaboration (SNL)
- Heliostat R&D (SNL)

Top Solar Thermochemical Cycles

Volatile Metal Oxides
•Zinc oxide

$$ZnO \xrightarrow{1600^+C-1900^+C} Zn + \frac{1}{2}O_2$$

 $Zn + H_2O \xrightarrow{300^+C-400^+C} ZnO + H_2$
•Cadmium Oxide
 $CdO \xrightarrow{1450^+C} Cd + \frac{1}{2}O_2$
 $Cd + H_2O \xrightarrow{375450^+C} CdO + H_2$
 Cd

 Hybrid Sulfur (HyS) and Sulfur Iodine (SI) are also considered but not actively researched by STCH

Progress in the Zn/ZnO Cycle

- Demonstrated highest net conversion (>40%) on record
- Future fluidized bed dispersion experiments should lead to >70% conversion, based on Mn₂O₃ results
- Extremely small product particles (>50 nm) give fast rates in H2 generation step

Aerosol processing can give fast rates for many high temperature cycles

- ZnO film growth slows hydrolysis rate smaller particles are better
- Experiments underway at high pressure
 - Drive diffusion through ZnO film
 - Substitute water pump for H₂ compressor, lower capital costs

Atomic Layer Deposition (ALD) of Co_xFe_{3-x}O₄

- Use ALD as a means to study factors affecting the cycle in order to engineer ferrites more effectively
 - Ferrite chemistry is not well understood
 - Hydrolysis kinetics are slow
 - Amount of O₂ evolved per mole ferrite affects cycle efficiency
- ALD offers precise control of
 - Stoichiometry
 - Film thickness
 - Specific surface area

Cadmium Oxide Cycle Status

- A two step thermochemical cycle with a calculated efficiency of 59%(LHV)
- Feasibility of decomposition and hydrolysis steps have been demonstrated
- Diurnal process flowsheet using Aspen Plus has been completed
- Conceptual decomposer design incorporating vapor quenching has been established
- Preliminary H2A studies resulted in \$4.50 /kg H₂ for 2015
- Need to optimize solar field design and determine detailed recombination kinetics
- Prototype rotary kiln for Cadmium hydrolysis is being tested

Hydrogen Production via Cadmium Hydrolysis

The steam to hydrogen ratio was evaluated for Cd hydrolysis

The largest conversion is at the Cd melting point ~470 C

Evaluation of Cd – O₂ Back Reaction

The back reaction rate between Cd and O₂ was evaluated.

This information supports to design of a quench system to maximize Cd (and H_2) yields

Cadmium recombination rate

Temp (°C)	5*	2	1
1033	35.5**	44.5	47.4
1476		31.5	

** cadmium-oxygen reaction rate (%/s) * O_2 flow rate (ml/min) total 150ml/min

Modified TGA Set Up for Reaction Rate Measurements

Cu-Cl cycle & its advantages

The Hybrid Cu-Cl Cycle

- Lab-scale proof-of-concept experiments completed
 - No show stoppers
 - 550°C maximum temperature
 - Suitable with power tower solar technology
 - High yields without catalysts for thermal reactions
- International support
 - Atomic Energy of Canada developing the electrolyzer
- 7 universities in US and Canada involved in R&D effort
 - Membrane development, measurement of thermodynamic properties of CuCl₂-CuCl-HCl solutions, electrochemistry, risk analysis, etc.

Process Development Status

- Conceptual process design completed
 - Aspen simulation used for mass and energy balance
 - Efficiency calculated as 40% (LHV)
 - Capital and operating costs estimated
 - Further refinement ongoing
- H2A analysis based on Solar Two Plant (Sandia) and conceptual process design
 - \$4.38 /kg $H_{\rm 2}$ for 2015 and \$3.01/kg $H_{\rm 2}$ for 2025
- Initiated engineering lab-scale work
 - Test key steps in the conceptual design
 - First set of results very promising

Key hydrolysis reaction demonstrated: CuCl₂ +H₂O = Cu₂OCl₂ +HCl

- Nebulizer reactor design concept successful
 - High heat and mass transfer zone
 - Very fine black powders of Cu₂OCl₂ produced

Nebulizer Furnace

Reaction Vessel

Solar Interface Development

Innovative Decomposer Design for a Beam Down Solar Tower

- Incorporates cadmium oxide decomposition and cadmium vapor quenching
- Chemical plant is on the ground
- Thermal Efficiency at 59% (LHV)
- Beam-down costs are not well understood

Multi-Tube Aerosol Reactor for Mn and Zn Cycles

- Tube array designed to intercept reflected and re-emitted radiation
- Tube material: Al₂O₃, SiC, and Haynes
 214
- Design anticipated to yield improved efficiency for moderate to high temperatures (>1200 °C)

Tube Material Under Test

Prototype Reactor

Solid Particle Receiver On-Sun Testing

- SPR evaluated on-sun at 2.5 MW_{th} level
- Demonstrated Single pass ΔT of ~200 C
- Target ΔT (SI-HyS) is between 300 500 C
- Materials evaluation underway

SPR on the Power Tower

Particle Curtain On-Sun

Numerical Models Support SPR Design

- Computational models are developed to assess receiver performance and efficiency
- Data from on-sun testing is being used to validate the complex models
- Validated models will be used in future SPR designs

Pathlines showing internal currents

Internal Cavity Air Temperature

Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5)

- Thermochemical heat engine concept
 - Converts thermal energy to chemical work
 - Analogous to mechanical heat engines
- Incorporates transport of ferrite, thermal reduction and hydrolysis reactors, countercurrent recuperation, intrinsic separation of H_2 and O_2

Set of Counter-Rotating Rings

CR5 Prototype Construction

H2A Economics

H2A Analyses – Current Status

We have worked with the different teams to help ensure that the hydrogen production (\$/kg) cost analyses have common and reasonable assumptions, enabling effective decision making.

Goal: Complete H2As for *ALL* cycles before the end of FY2008 to inform cycle down select.

Current Status:

- Hybrid Sulfur Nearly complete for 2015 and 2025; will work with SRNL and SNL to modify cycle for solar (vs. nuclear)
- Zn/ZnO Need to complete additional refinements for 2015 and 2025 cases
- CuCl Working to refine electrolyzer costs
- Ferrite Very preliminary design and H2A completed
- Cd/CdO Need updated H2As with new solar field
- Solar-Thermal Electrolysis Need vetted solar thermal electricity price from DOE Solar Office
- S-I (Reactive) Preliminary H2A done, will refine together with SRNL, Technology Insights
- Manganese Oxide, Ammonium Sulfate No H2A received to date.

Current H2A Cost Estimates

Comparison of current cost estimates:

	2015	2025	Comments
Cd / CdO	Under revision	Not available	Cycle under revision
CuCl	\$4.30	\$2.82	Electrolyzer cost highly uncertain
Ferrite	\$5.52	Not available	Very preliminary
Hybrid Sulfur	\$4.37	\$2.91	Solar electric cost important
Zn / ZnO	\$5.07	\$3.62	Solar field + receiver cost, performance questions
S-I	\$3.86 - \$4.60		Very preliminary

The cost estimates are central to the upcoming cycle down selects coming in 2008. Specifically, if a cycle does not have a plausible path to attaining DOE hydrogen cost goals in 2025, DOE-funded work on the cycle is unlikely to continue.

Future Work

- Continually update H2A analyses on all prospective cycles
- Continue feasibility and system design efforts
- Demonstrate solar interfaces on-sun
- Downselect to 1-2 best cycles at the end of FY08
- Develop an R&D plan to carry forward the 1-2 best cycles to a pilot scale demonstration
- FY09 DOE/EERE budget request for hydrogen production is \$0

- Objective
 - Identify 1-2 solar thermochemical routes to cost effective hydrogen production
- Approach
 - Evaluate the feasibility of associated chemical reactions and develop appropriate solar interfaces. Support this work with an economic evaluation.
- Technical Accomplishments
 - Feasibility studies are progressing, solid particle receiver has been demonstrated, other receiver concepts nearing demonstration, H2A analysis is underway
- Future Work
 - Continue feasibility studies expanding ferrite efforts, update H2A on all cyles, downselect to 1-2 best cycles, develop future R&D plan to support pilot-scale demo

