Composite Technology for Hydrogen Pipelines

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Start: Jan 2005
- Finish: Project continuation & direction determined annually by DOE

Budget

- Total project funding
 DOE: \$1.05M
- Funding received in FY 07
 \$450k
- Funding for FY 08

 \$450k
 \$450k

Barriers

- D. High Capital Cost and Hydrogen Embrittlement of pipelines
- Technical Targets on next slide

Partners & Collaborators

- Fiberspar, PolyFlow
- Arkema, Ticona, Fluoro-Seal
- SRNL
- Pipeline Working Group

2 Managed by UT-Battelle for the Department of Energy

Overview

Technical Targets

Category	2005 Status	2012	2017	
Pipelines: Transmission				
Total Capital Investment (16-in pipeline, \$/mile)	\$720k	\$600k	\$490k	
Pipelines: Distribution				
Total Capital Investment (2-inch pipeline, \$/mile)	\$320k	\$270k	\$190k	
Pipelines: Transmission and Distribution				
Reliability/Integrity (including 3rd-party damage issues)	Acceptable for current service		Acceptable for H ₂ as a major energy carrier	
H ₂ Leakage *	Undefined	TBD	< 0.5%	

* Leakage targets are being reviewed by the Delivery Tech Team

Project Milestones

Month-Year	Milestone or Go/No-Go Decision	
May 2008	Milestone: Initial round of polymer diffusivity and permeability measurements <u>completed</u> .	
Sep 2008	 Go/no-go decision: Hydrogen compatibility evaluation of composite pipeline materials and construction completed and reported (on track) Milestone: Survey of existing modifications and treatments available for reducing permeability in liner materials completed and reported (40% complete) Milestone: Recommendations for sensor integration, manufacturing and joining technologies completed and reported (20% complete) 	

Task 1: Pipeline Materials Compatibility

- Accelerated aging in H₂
- Testing and evaluation
- 60% omplete

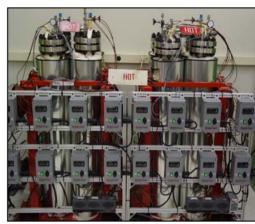
omplete

50%

Task 2: Liner permeability

- Survey and measure polymer D and P
- Assess modification and treatment options

20% complete


Task 3: Joining and sensor technologies

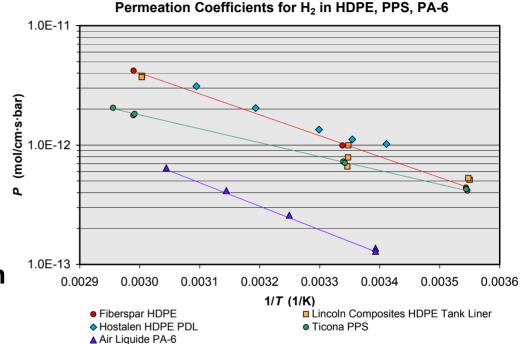
- Assess coupling, termination, repair
- Assess needs for structural health monitoring, leakage and gas property sensing

Technical Accomplishments

- Task 1: Pipeline materials compatibility testing
 - One-month hydrogen exposure completed with no materials degradation; longer-term exposure underway
 - Initial pipeline leakage measurements completed: smaller than expected leak rate (0.03% per day); additional measurements underway
 - Blowdown testing of FRP pipeline specimen in progress

H₂ exposure station at SRNL

Pipeline test specimens



Leakage measurement at ORNL

Technical Accomplishments

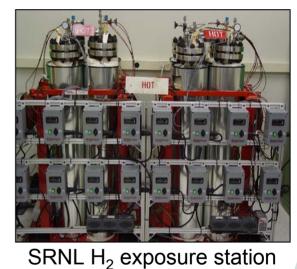
- Task 2: New contributions to polymer permeation literature
 - Permeation coefficients for H₂ in HDPE exhibit pressure dependence
 - Coefficients for H₂ in PA and PPS are smaller than those for HDPE
 - Evaluation of surface fluorination treatment in progress

Technical Accomplishments

- Task 3: Joining and sensor technologies
 - Indirect evaluation of hydrogen leakage through Fiberspar LinePipe[™] connectors showed very low leakage rate (<3x10⁻⁶ mol/s)
 - Collaborative effort with SRNL to assess joint loading, pipeline flexure, and pressure/temperature cycling on hydrogen leakage for both Fiberspar and PolyFlow connectors

FiberSpar connector with compressive o-ring seals

PolyFlow swaged connector



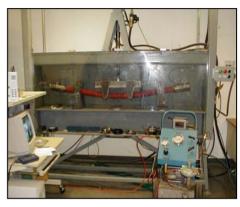
One-month accelerated aging of Fiberspar materials completed

- Accelerated aging procedure used to screen for long-term effects of hydrogen exposure on composite pipeline under normal-usage conditions
- Specimens of Fiberspar pipelines and constituent materials
 - Immersion in 1000 psi H₂
 - Accelerated aging at 140°F (60°C)
 - 1 month & 8 month exposures

13' utenistig at-off2 01-51-57

4-pt bending test specimen

Tensile-test specime


Tensile-test specimen of liner material

Compression test specimen

No measurable degradation in materials performance after accelerated aging

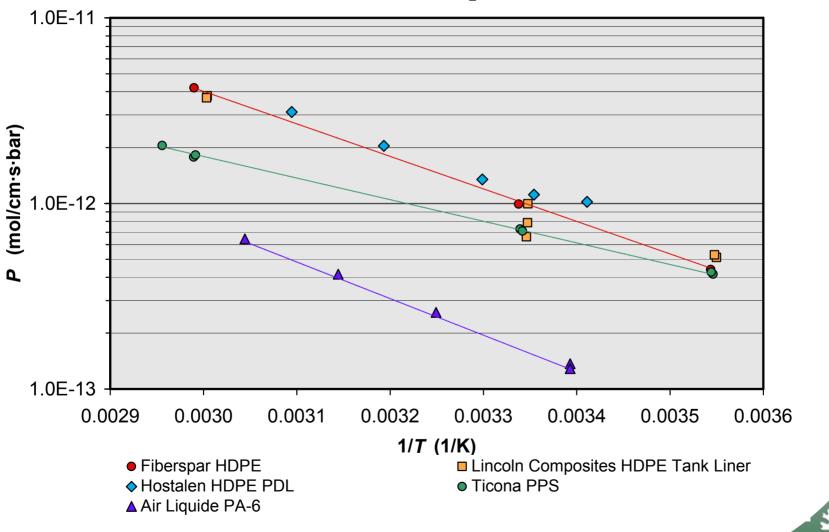
- Post-exposure testing of pipeline specimens and materials
 - 4-point bending test to assess laminate cracking
 - Short-term pressure burst test (ASTM D1599)
 - Parallel plate compression test (ASTM D2412)
 - Tensile tests and DMA of liner, matrix resin, glass filaments
- No statistically significant differences between as-received, air-exposed and hydrogen-exposed pipeline specimens and materials

4-pt bending test at Fiberspar

Single glass filament used for strength, elongation and modulus measurements

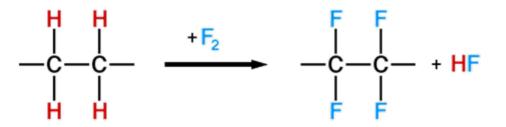
No reduction in tensile properties of epoxy matrix resin

	Epoxy Matrix Resin Conditioning		
Test (dog bone)	Air @ 140°F 1 month	1000 psi H₂ * @ 140°F 1 month	
Tensile Strength	7,891 psi (27.9)	8,791 psi (20.2)	
Elongation	2.9 % (43.1)	3.5 % (40.0)	
Tensile Modulus	371 ksi (1.1)	371 ksi (0.6)	


*H₂ conditioning at SRNL. Numbers in parentheses are % coefficients of variation for data set.

11 Managed by UT-Battelle for the Department of Energy

New permeation coefficient measurements for H₂ in HDPE, PPS


Permeation Coefficients for H₂ in HDPE, PPS, PA-6

12 Managed by UT-Battelle for the Department of Energy

Polymer surface modification in progress

- Polymer surface modification via fluorination
 - Surface fluorination used in packaging industry to reduce emission of VOCs
 - Reduces *D* and *P* of VOCs by factors of 1.5 to 4.5 in HDPE containers
- Surface fluorination proceeds via free radical mechanism in molecular exchange along polymer chains at surface

- Fluoro-Seal is providing fluorination treatment of pipelinegrade HDPE, PPS, PA
- Expect results in 4th reporting period

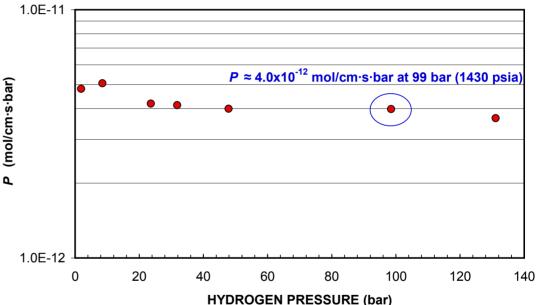
Prediction of H₂ leak rate for Fiberspar pipeline with HDPE barrier tube

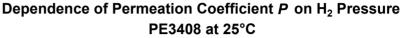
- Fiberspar LinePipe 4-1/2 1,500 (E)
 - Barrier tube: extruded PE-3408
 - Tube inner radius = 5.05 cm
 - Tube outer radius 5.576 cm
- Hydrogen leak rate per unit length of barrier tube given by

$$\frac{dn}{dt} = \frac{2\pi P}{\ln(b/a)} (p_0 - p_1) \quad \text{mol} \cdot \text{s}^{-1} \cdot \text{m}^{-1}$$

where

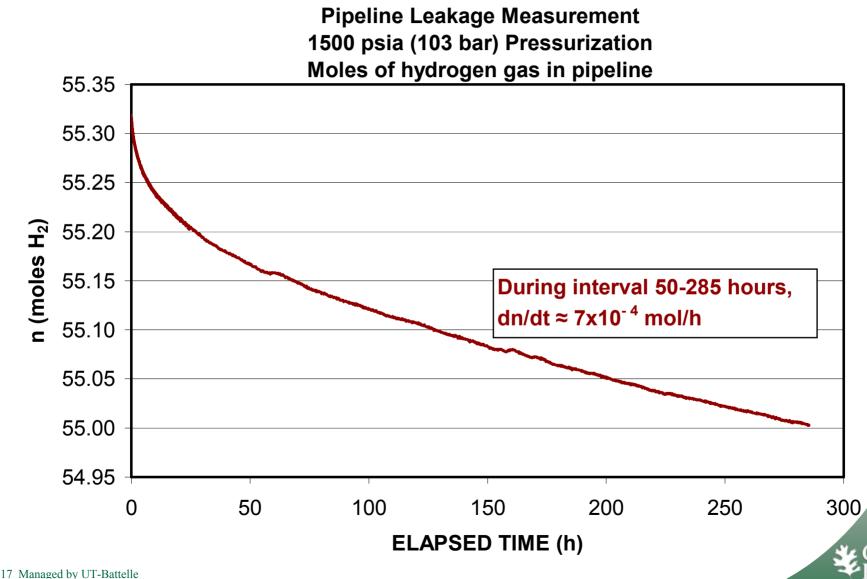
P = permeation coefficient for hydrogen in HDPE


a,b = inner, outer radii of tube wall


 p_0, p_1 = hydrogen pressures inside, outside tube

Prediction of H₂ leak rate in Fiberspar pipeline with HDPE barrier tube

- Parameter values
 - P ≈ 4x10⁻¹² mol/cm · s · bar
 - a= 5.05 cm, b= 5.576 cm
 - $-p_0$ = 99 bar, p_1 = 1 bar
- Predicted hydrogen leak rate in 1.83-m pipeline
 - $dn/dt = 1.7 \times 10^{-2} \text{ mol/h}$
 - This leak rate would be equivalent to a loss of 3.4x10⁻⁵ kg/h



Measurement of H₂ leak rate in Fiberspar pipeline with HDPE barrier tube

- Pressure decay measurement
 - Using quartz pressure transducer with digital output
 - Range: 0-3000 psia (0-200 bar)
 - Accuracy: 0.01% (0.3 psi / 20 mbar) in 0-70 °C range
- Temperature compensation for pipeline pressure
 - RTD sensors inside pipeline measure gas temperature
 - Pressure corrected using Able-Noble EOS for hydrogen
- Volumetric expansion compensation
 - Pressure-induced expansion and contraction involves bi-axial stress-strain relationships, differing axial and hoop moduli, Poisson ratios for major and minor axes
 - Change in volume expected to be < 0.01% per psi at 1500 psia and RT → no correction applied

Measurement of H₂ leak rate in Fiberspar pipeline with HDPE barrier tube

for the Department of Energy

H₂ leak rate in pipeline with HDPE barrier tube is better than expected

- Leakage from end cap seals is not a significant contribution to total leak rate
- Product loss due to permeation
 - $dn/dt = 7x10^{-4} \text{ mol/h} \rightarrow 2x10^{-2} \text{ mol/d}$
 - Pipeline under test contained approx. 55 mol H₂
 - Loss due to barrier tube permeation and end cap seal leakage was 0.03% per day, about 20 times less than that predicted using permeation coefficient for PE-3408 liner

Hydrogen blowdown testing of composite pipelines in progress

- Guidance: API 15S Qualification of Spoolable Reinforced Plastic Line Pipe*
 - Fill specimen with hydrogen to pressure rating, heat specimen to temperature rating, and hold these conditions until pipeline structure is saturated with gas
 - Following hold period, de-pressurize specimen at a rate not less than 1000 psi/min
 - Examine specimen liner for evidence of blistering or collapse

*API 15S Appendix D specifies that supercritical CO₂ be used for blowdown testing

1-meter pipeline specimen instrumented for blowdown testing

Future Work

- FY 2008
 - Report test results from 8-month accelerated aging and hydrogen exposure of pipeline and material specimens
 - Continue measurements of liner materials, including measurements of surface fluorination samples
 - Construct diffusion and permeation apparatus for polymers, with additional capabilities

• FY 2009

- Begin assessment of possible hydrogen-induced cracking in the reinforcement layers during cyclical strain, perform long-term stress rupture tests, perform high-pressure cyclical fatigue tests, assess joint sealing under cyclic loading
- Complete assessment of joining and integrated sensor technologies and report results
- Collaborate on development of codes & standards for hydrogen-service FRP pipelines

Project Summary

- **Relevance:** Need viable alternative to metallic pipelines to achieve cost and performance targets for hydrogen transmission and distribution
- Approach: Investigate applicability of composite pipelines in use in oil & gas gathering operations and develop path forward for hydrogen delivery
- Progress: Cost scenario shows composite pipelines are meet DOE 2012 goals and are close to 2017 goals; hydrogen compatibility of pipeline materials is acceptable; pipeline leakage rates are better than predicted
- **Collaborations:** Pipeline and polymer industries, National Lab
- **Future:** Codes & standards; prototype FRP pipeline system for H₂ delivery; demonstration project

